首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In eukaryotes, DNA replication requires the regulated assembly of pre-replicative complexes (pre-RCs) onto DNA during G1 phase. Pre-RCs render the chromatin competent to replicate, yet it is only at the G1-S phase transition that protein-kinase complexes trigger the transition to DNA replication. Central to the formation of pre-RCs and regulation of DNA replication is the Cdc6 protein. Two recent studies have shown that Cdc6 is the long-sought factor that confers the competence to replicate in unfertilized Xenopus eggs.  相似文献   

2.
3.
Intersectins (ITSNs) have been shown to act as adaptor proteins that govern multiple cellular events via regulating Cdc42 activity. However, it remains to be determined whether the ITSN-Cdc42 pathway is functional in porcine oocytes. To address this question, we used a small molecule, ZCL278, to selectively disrupt the ITSN2-Cdc42 interaction. In the present study, we find that porcine oocytes exposed to ZCL278 are unable to completely progress through meiosis. Meanwhile, the spindle defects and chromosomal congression failure are frequently detected in these oocytes. In support of this, we observed the accumulated distribution of vesicle-like ITSN2 signals around the chromosome/spindle region during porcine oocyte maturation. In addition, our results also showed that inhibition of the ITSN-Cdc42 interaction impairs the actin polymerization in porcine oocytes. In summary, the findings support a model where ITSNs, through the interaction with Cdc42, modulates the assembly of meiotic apparatus and actin polymerization, consequently ensuring the orderly meiotic progression during porcine oocyte maturation.  相似文献   

4.
Most eukaryotic cell types can withdraw from proliferative cell cycles and remain quiescent for extended periods. Intact nuclei isolated from quiescent murine NIH3T3 cells fail to replicate in vitro when incubated in Xenopus egg extracts, although intact nuclei from proliferating cells replicate well. Permeabilization of the nuclear envelope rescues the ability of quiescent nuclei to replicate in the extract. We show that origin replication complex (ORC), minichromosome maintenance (MCM), and Cdc6 proteins are all present in early quiescent cells. Immunodepletion of Cdc6 or the MCM complex from Xenopus egg extract inhibits replication of permeable, quiescent, but not proliferating, NIH3T3 nuclei. Immunoblotting results demonstrate that mouse homologues of Mcm2, Mcm5, and Cdc6 are displaced from chromatin in quiescent cells. However, this absence of chromatin-bound Cdc6 and MCM proteins from quiescent cells appears not to be due to the absence of ORC subunits as murine homologues of Orc1 and Orc2 remain chromatin-bound in quiescent cells. Surprisingly, intact quiescent nuclei fail to bind exogenously added XCdc6 or to replicate in Xenopus egg extracts immunodepleted of ORC, even though G1- or S-phase nuclei still replicate in these extracts. Our results identify Cdc6 and the MCM complex as essential replication components absent from quiescent chromatin due to nonfunctional chromatin-bound ORC proteins. These results can explain why quiescent mammalian nuclei are unable to replicate in vivo and in Xenopus egg extracts.  相似文献   

5.
Meiosis may have evolved gradually within the eukaryotes with the earliest forms having a one‐step meiosis. It has been speculated that the putative transition from a one‐step meiosis without recombination to one with recombination may have been stimulated by the invasion of Killer alleles. These imaginary selfish elements are considered to act prior to recombination. They prime for destruction (which occurs after cell division) the half of the cell on the opposite side of the meiotic spindle. Likewise the transition from one‐step to two‐step meiosis might have been stimulated by a subtly different sort of imaginary distorter allele, a SisterKiller. These are proposed to act after recombination. It has yet to be established that the presence of such distorter alleles could induce the transitions in question. To investigate these issues we have analysed the dynamics of a modifier (1) of recombination and (2) of the number of steps of meiosis, as they enter a population with one‐step meiosis. For the modifier of recombination, we find that invasion conditions are very broad and that persistence of Killer and modifier is likely through most parameter space, even when the recombination rate is low. However, if we allow a Killer element to mutate into one that is self‐tolerant, the modifier and the nonself‐tolerant alleles are typically both lost from the population. The modifier of the number of steps can invade if the SisterKiller acts at meiosis II. However, a SisterKiller acting at meiosis I, far from promoting the modifier’s spread, actually impedes it. In the former case the invasion is easiest if there is no recombination. The SisterKiller hypothesis therefore fails to provide a reasonable account of the evolution of two‐step meiosis with recombination. As before, the evolution of self‐tolerance on the part of the selfish element destroys the process. We conclude that the conditions under which SisterKillers promote the evolution of two‐step meiosis are very much more limited than originally considered. We also conclude that there is no universal agreement between ESS and modifier analyses of the same transitions.  相似文献   

6.
7.
8.
Archaea contain one or more proteins with homology to eukaryotic ORC/Cdc6 proteins. Sequence analysis suggests the existence of at least two subfamilies of these proteins, for which we propose the nomenclature ORC1 and ORC2. We have determined crystal structures of the ORC2 protein from the archaeon Aeropyrum pernix in complexes with ADP or a non-hydrolysable ATP analogue, ADPNP. Between two crystal forms, there are three crystallographically independent views of the ADP complex and two of the ADPNP complex. The protein molecules in the three complexes with ADP adopt very different conformations, while the two complexes with ADPNP are the same. These structures indicate that there is considerable conformational flexibility in ORC2 but that ATP binding stabilises a single conformation. We show that the ORC2 protein can bind DNA, and that this activity is associated with the C-terminal domain of the protein. We present a model for the interaction of the winged helix (WH) domain of ORC2 with DNA that differs from that proposed previously for Pyrobaculum aerophilum ORC/Cdc6.  相似文献   

9.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

10.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

11.
Damaged regulation of the small ubiquitin-like modifier (SUMO) system contributes to some human diseases; therefore, it is very important to identify the SUMO targets and to determine the function of their sumoylation. In this study, it is shown that Ecm11 protein in Saccharomyces cerevisiae is modified by SUMO during meiosis. It is known that Ecm11 is required in the early stages of yeast meiosis where its function is related to DNA replication and crossing over. Here it is shown that the level of Ecm11 protein is low in mitosis, but high in meiosis. The highest level of Ecm11 is in the early-middle phase of sporulation. A specific site of sumoylation was identified in Ecm11 at Lys5 and evidence is provided that sumoylation at this site directly regulates Ecm11 function in meiosis. On the other hand, no relationship was observed between sumoylation of Ecm11 and its role during vegetative growth. It was shown that Ecm11 interacts with Siz2 SUMO ligase in a two-hybrid system; although Siz2 is not essential for the Ecm11 sumoylation.  相似文献   

12.
Using an in vitro chromatin assembly assay in Xenopus egg extract, we show that cyclin E binds specifically and saturably to chromatin in three phases. In the first phase, the origin recognition complex and Cdc6 prereplication proteins, but not the minichromosome maintenance complex, are necessary and biochemically sufficient for ATP-dependent binding of cyclin E--Cdk2 to DNA. We find that cyclin E binds the NH(2)-terminal region of Cdc6 containing Cy--Arg-X-Leu (RXL) motifs. Cyclin E proteins with mutated substrate selection (Met-Arg-Ala-Ile-Leu; MRAIL) motifs fail to bind Cdc6, fail to compete with endogenous cyclin E--Cdk2 for chromatin binding, and fail to rescue replication in cyclin E--depleted extracts. Cdc6 proteins with mutations in the three consensus RXL motifs are quantitatively deficient for cyclin E binding and for rescuing replication in Cdc6-depleted extracts. Thus, the cyclin E--Cdc6 interaction that localizes the Cdk2 complex to chromatin is important for DNA replication. During the second phase, cyclin E--Cdk2 accumulates on chromatin, dependent on polymerase activity. In the third phase, cyclin E is phosphorylated, and the cyclin E--Cdk2 complex is displaced from chromatin in mitosis. In vitro, mitogen-activated protein kinase and especially cyclin B--Cdc2, but not the polo-like kinase 1, remove cyclin E--Cdk2 from chromatin. Rebinding of hyperphosphorylated cyclin E--Cdk2 to interphase chromatin requires dephosphorylation, and the Cdk kinase-directed Cdc14 phosphatase is sufficient for this dephosphorylation in vitro. These three phases of cyclin E association with chromatin may facilitate the diverse activities of cyclin E--Cdk2 in initiating replication, blocking rereplication, and allowing resetting of origins after mitosis.  相似文献   

13.
Chromatin structure and function are for a large part determined by the six members of the structural maintenance of chromosomes (SMC) protein family, which form three heterodimeric complexes: Smc1/3 (cohesin), Smc2/4 (condensin) and Smc5/6. Each complex has distinct and important roles in chromatin dynamics, gene expression and differentiation. In yeast and Drosophila, Smc6 is involved in recombinational repair, restarting collapsed replication forks and prevention of recombination in repetitive sequences such as rDNA and pericentromeric heterochromatin. Although such DNA damage control mechanisms, as well as highly dynamic changes in chromatin composition and function, are essential for gametogenesis, knowledge on Smc6 function in mammalian systems is limited. We therefore have investigated the role of Smc6 during mammalian spermatogonial differentiation, meiosis and subsequent spermiogenesis. We found that, during mouse spermatogenesis, Smc6 functions as part of meiotic pericentromeric heterochromatin domains that are initiated when differentiating spermatogonia become irreversibly committed toward meiosis. To our knowledge, we are the first to provide insight into how commitment toward meiosis alters chromatin structure and dynamics, thereby setting apart differentiating spermatogonia from the undifferentiated spermatogonia, including the spermatogonial stem cells. Interestingly, Smc6 is not essential for spermatogonial mitosis, whereas Smc6-negative meiotic cells appear unable to finish their first meiotic division. Importantly, during meiosis, we find that DNA repair or recombination sites, marked by γH2AX or Rad51 respectively, do not co-localize with the pericentromeric heterochromatin domains where Smc6 is located. Considering the repetitive nature of these domains and that Smc6 has been previously shown to prevent recombination in repetitive sequences, we hypothesize that Smc6 has a role in the prevention of aberrant recombination events between pericentromeric regions during the first meiotic prophase that would otherwise cause chromosomal aberrations leading to apoptosis, meiotic arrest or aneuploidies.  相似文献   

14.
15.
16.
The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4‐dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo‐like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4‐Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double‐strand breaks. Taken together, we propose that the concerted action of DDK, Polo‐like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.  相似文献   

17.
Cytokinesis in mammalian cells requires actin assembly at the equatorial region. Although functions of RhoA in this process have been well established, additional mechanisms are likely involved. We have examined if Cdc42 is involved in actin assembly during cytokinesis. Depletion of Cdc42 had no apparent effects on the duration of cytokinesis, while overexpression of constitutively active Cdc42 (CACdc42) caused cytokinesis failure in normal rat kidney epithelial cells. Cells depleted of Cdc42 displayed abnormal cell morphology and caused a failure of tight accumulation of actin and RhoA at the equator. In contrast, in cells overexpressing CACdc42, actin formed abnormal bundles and RhoA was largely eliminated from the equator. Our results suggest that accurate regulation of Cdc42 activity is crucial for proper equatorial actin assembly and RhoA localization during cytokinesis. Notably, our observations also suggest that tight actin concentration is not essential for cytokinesis in adherent mammalian cells.  相似文献   

18.
19.
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.  相似文献   

20.
In the embryonic gonads of mice, the genetic and epigenetic regulatory programs for germ cell sex specification and meiosis induction or suppression are intertwined. The quest for garnering comprehensive understanding of these programs has led to the emergence of retinoic acid (RA) as an important extrinsic factor, which regulates initiation of meiosis in female fetal germ cells that have attained a permissive epigenetic ground state. In contrast, germ cells in fetal testis are protected from the exposure to RA due to the activity of CYP26B1, an RA metabolizing enzyme, which is highly expressed in fetal testis. In this review, we provide an overview of the molecular mechanisms operating in fetal gonads of mice, which enable regulation of meiosis via RA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号