首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
Human transthyretin (TTR) is an amyloidogenic protein. The pathway of TTR amyloid formation has been proposed based on lines of evidence: TTR tetramer first dissociates into native monomers, which is shown to be a rate-limiting step in the formation of fibrils. Subsequently, the monomeric species partially unfold to form the aggregation intermediates. Once such intermediates are formed, the following self-assembly process is a downhill polymerization. Hence, tertiary structural changes within the monomers after the dissociation are essential for the amyloid formation. These tertiary structural changes can be facilitated by partial denaturation. To probe the conformational changes under the partially denaturing conditions, five independent trajectories were collected for the wild-type (WT) and its pathogenic variants at 300 and 350 K, resulting in simulations that totaled 59 ns. Under these conditions, L55P variant is more labile than the wild-type and V30M variant. We have observed that the D strand of WT-TTR is trapped in two local minima: the native conformation and the amyloidogenic fold that resembles the surface loop of residues 54-55 of L55P variant. In the tetrameric state, the F strand is bent with large separations at the F-F' interface. This strand becomes flatter in the monomeric state, which may facilitate the formation of new F-F' interface with possible prolonged hydrogen bonds and/or shift in beta-strand register in the fibril state. During the unfolding process, the anticorrelated motion between the strands H and G as well as the strands H and A pulls the H strand out of the inner sheet plane, leading to a more twisted inner sheet. Our simulation has provided important detailed structural information about the partially unfolded state of TTR that may be related to the amyloidogenic intermediates.  相似文献   

2.
Misfolding and amyloid formation of transthyretin (TTR) is implicated in numerous degenerative diseases. TTR misfolding is greatly accelerated under acidic conditions, and thus most of the mechanistic studies of TTR amyloid formation have been conducted at various acidic pH values (2–5). In this study, we report the effect of pH on TTR misfolding pathways and amyloid structures. Our combined solution and solid-state NMR studies revealed that TTR amyloid formation can proceed via at least two distinct misfolding pathways depending on the acidic conditions. Under mildly acidic conditions (pH 4.4), tetrameric native TTR appears to dissociate to monomers that maintain most of the native-like β-sheet structures. The amyloidogenic protein undergoes a conformational transition to largely unfolded states at more acidic conditions (pH 2.4), leading to amyloid with distinct molecular structures. Aggregation kinetics is also highly dependent upon the acidic conditions. TTR quickly forms moderately ordered amyloids at pH 4.4, while the aggregation kinetics is dramatically reduced at a lower pH of 2.4. The effect of the pathogenic mutations on aggregation kinetics is also markedly different under the two different acidic conditions. Pathogenic TTR variants (V30M and L55P) aggregate more aggressively than WT TTR at pH 4.4. In contrast, the single-point mutations do not affect the aggregation kinetics at the more acidic condition of pH 2.4. Given that the pathogenic mutations lead to more aggressive forms of TTR amyloidoses, the mildly acidic condition might be more suitable for mechanistic studies of TTR misfolding and aggregation.  相似文献   

3.
Transthyretin (TTR) is a human disease-associated amyloidogenic protein that has been implicated in senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). FAP typically results in severe and early-onset disease, and the only therapy established so far is liver transplantation; thus, developing new strategies for treating FAP is of paramount interest. Clusterin has recently been proposed to play a role as an extracellular molecular chaperone, affecting the fibril formation of amyloidogenic proteins. The ability of clusterin to influence amyloid fibril formation prompted us to investigate whether clusterin is capable of inhibiting TTR amyloidosis. Here, we report that clusterin strongly interacts with wild-type TTR and TTR variants V30M and L55P under acidic conditions, and blocks the amyloid fibril formation of TTR variants. In particular, the amyloid fibril formation of V30M TTR in the presence of clusterin is reduced to level similar to wild-type TTR. We also demonstrated that clusterin is an effective inhibitor of L55P TTR amyloidosis, the most aggressive form of TTR diseases. The mechanism by which clusterin inhibits TTR amyloidosis appears to be through stabilization of TTR tetrameric structure. These findings suggest the possibility of using clusterin as a therapeutic agent for TTR amyloidosis.  相似文献   

4.
Transthyretin (TTR) is one of the about 20 known human proteins associated with amyloidosis which is characterized by the accumulation of amyloid fibrils in tissues or extracellular matrix surrounding vital organs. Unlike Alzheimer's fibrils that comprise a fragment of a large precursor protein, TTR amyloid fibrils are composed of both full-length protein and fragments of the molecule. The native state of TTR is a homotetramer with eight beta-strands organized into a beta-sandwich in each monomer. To elucidate the structural reorganization mechanisms preceding amyloid formation, it is important to characterize the dynamic features of the wild-type native state as well as to reveal the influence of disease-associated mutations on the structure and dynamics. Molecular dynamics (MD) simulations complement X-ray crystallography and D-H exchange to capture the intrinsically unstable/flexible sites of the wild-type as well as the mutation dependent unstable sites of the pathogenic variants. Our results of MD simulations have shown that the Leu55-->Pro (L55P) mutation occurs in an intrinsically unstable site, leading to substantial local and global structural changes. This observation supports the early speculation that the C-strand-loop-D-strand rearrangement leads to the formation of amyloidogenic intermediates. In addition to the D strand, the alpha-helical region and the strands at the monomer-monomer interface are also intrinsically unstable. The central channel of L55P-TTR undergoes opening and closing fluctuations, which may provide an explanation for the fact that while the mutation is far from the channel, the mutant shows a substantial low binding affinity of thyroxine.  相似文献   

5.
Transthyretin (TTR) is one of the known human amyloidogenic proteins. Its native state is a homotetramer with each monomer having a beta-sandwich structure. Strong experimental evidence suggests that TTR dissociates into monomeric intermediates and that the monomers subsequently self-assemble to form amyloid deposits and insoluble fibrils. However, details on the early steps along the pathway of TTR amyloid formation are unclear, although various experimental approaches with resolutions at the molecular or residue level have provided some clues. It is highly likely that the stability and flexibility of monomeric TTR play crucial roles in the early steps of amyloid formation; thereby, it is essential to characterize initial conformational changes of TTR monomers. In this article we probe the possibility that the differences in the monomeric forms of wild-type (WT) TTR and its variants are responsible for differential amyloidogenesis. We begin with the simulations of WT, Val30-->Met (V30M), and Leu55-->Pro (L55P) TTR monomers. Nanosecond time scale molecular dynamics simulations at 300 K were performed using AMBER. The results indicate that the L55P-TTR monomer undergoes substantial structural changes relative to fluctuations observed in the WT and V30M TTR monomers. The observation supports earlier speculation that the L55P mutation may lead to disruption of the beta-sheet structure through the disorder of the "edge strands" that might facilitate amyloidogenesis.  相似文献   

6.
Transthyretin is a human protein capable of amyloid formation that is believed to cause several types of amyloid disease, depending on the sequence deposited. Previous studies have demonstrated that wild-type transthyretin (TTR), although quite stable, forms amyloid upon dissociation from its native tetrameric form into monomers with an altered conformation. Many naturally occurring single-site variants of TTR display decreased stability in vitro, manifested by the early onset familial amyloid diseases in vivo. Only subtle structural changes were observed in X-ray crystallographic structures of these disease associated variants. In this study, the stability of the wild-type TTR tetramer was investigated at the residue-resolution level by monitoring (2)H-H exchange via NMR spectroscopy. The measured protection factors for slowly-exchanging amide hydrogen atoms reveal a stable core consisting of strands A, B, E, F, and interestingly, the loop between strands A and B. In addition, the faster exchange of amide groups from residues at the subunit interfaces suggests unexpected mobility in these regions. This information is crucial for future comparisons between disease-associated and wild-type tetramers. Such studies can directly address the regions of TTR that become destabilized as a consequence of single amino acid substitutions, providing clues to aspects of TTR amyloidogenesis.  相似文献   

7.
Toxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of aggregation associated with the formation of amyloid fibrils. Despite their relevance, the heterogeneity and transience of these oligomers have placed great barriers in our understanding of their structural properties. Among amyloid intermediates, annular oligomers or annular protofibrils have raised considerable interest because they may contribute to a mechanism of cellular toxicity via membrane permeation. Here we investigated, by using AFM force spectroscopy, the structural detail of amyloid annular oligomers from transthyretin (TTR), a protein involved in systemic and neurodegenerative amyloidogenic disorders. Manipulation was performed in situ , in the absence of molecular handles and using persistence length‐fit values to select relevant curves. Force curves reveal the presence of dimers in TTR annular oligomers that unfold via a series of structural intermediates. This is in contrast with the manipulation of native TTR that was more often manipulated over length scales compatible with a TTR monomer and without unfolding intermediates. Imaging and force spectroscopy data suggest that dimers are formed by the assembly of monomers in a head‐to‐head orientation with a nonnative interface along their β‐strands. Furthermore, these dimers stack through nonnative contacts that may enhance the stability of the misfolded structure.  相似文献   

8.
The formation of amyloid aggregates is the hallmark of the amyloidogenic diseases. Transthyretin (TTR) is involved in senile systemic amyloidosis (wild-type protein) and familial amyloidotic polyneuropathy (point mutants). Through the use of high hydrostatic pressure (HHP), we compare the stability among wild-type (wt) TTR, two disease-associated mutations (V30M and L55P) and a trans-suppressor mutation (T119M). Our data show that the amyloidogenic conformation, easily populated in the disease-associated mutant L55P, can be induced by a cycle of compression-decompression with the wt protein rendering the latter highly amyloidogenic. After decompression, the recovered wt structure has weaker subunit interactions (loosened tetramer, T(4)(*)) and presents a stability similar to L55P, suggesting that HHP induces a defective fold in the wt protein, converting it to an altered conformation already present in the aggressive mutant, L55P. On the other hand, glucose, a chemical chaperone, can mimic the trans-suppression mutation by stabilizing the native state and by decreasing the amyloidogenic potential of the wt TTR at pH 5.0. The sequence of pressure stability observed was: L55P相似文献   

9.
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate.  相似文献   

10.
The familial amyloidotic polyneuropathy is strictly associated with point mutations in the coding region of the transthyretin gene. Here, we focused on the mutations in the monomer-monomer and dimer-dimer interaction site of the transthyretin tetramer. The naturally occurring amyloidogenic Tyr114His (Y114H) and Tyr116Ser (Y116S) variants formed more amyloid fibrils than the wild-type transthyretin, nonamyloidogenic Tyr116Val (Y116V) variant, and other amyloidogenic variants in previous studies. The secondary, tertiary, and quaternary structural stabilities of the Y114H and Y116S variants were compared with those of the wild-type transthyretin and nonamyloidogenic Y116V variant. The unfolding data indicated that the amyloidogenic Y114H and Y116S mutations reduced the stability of the secondary, tertiary, and quaternary structure. Our results also indicated that the unfolding of Y114H and Y116S is less cooperative than that of the wild-type transthyretin. Moreover, the tetramer of the amyloidogenic variants dissociated to the monomer even at pH 7.0, indicating the importance of Tyr114 and Tyr116 in strengthening the contacts between monomers and/or dimers of the transthyretin molecule.  相似文献   

11.
Amyloid fibril formation and deposition is a common feature of a wide range of fatal diseases including spongiform encephalopathies, Alzheimer's disease, and familial amyloidotic polyneuropathies (FAP), among many others. In certain forms of FAP, the amyloid fibrils are mostly constituted by variants of transthyretin (TTR), a homotetrameric plasma protein. Recently, we showed that transthyretin in solution may undergo dissociation to a non-native monomer, even under close to physiological conditions of temperature, pH, ionic strength, and protein concentration. We also showed that this non-native monomer is a compact structure, does not behave as a molten globule, and may lead to the formation of partially unfolded monomeric species and high molecular mass soluble aggregates (Quintas, A., Saraiva, M. J. M., and Brito, R. M. M. (1999) J. Biol. Chem. 274, 32943-32949). Here, based on aging experiments of tetrameric TTR and chemically induced protein unfolding experiments of the non-native monomeric forms, we show that tetramer dissociation and partial unfolding of the monomer precedes amyloid fibril formation. We also show that TTR variants with the least thermodynamically stable non-native monomer produce the largest amount of partially unfolded monomeric species and soluble aggregates under conditions that are close to physiological. Additionally, the soluble aggregates formed by the amyloidogenic TTR variants showed morphological and thioflavin-T fluorescence properties characteristic of amyloid. These results allowed us to conclude that amyloid fibril formation by some TTR variants might be triggered by tetramer dissociation to a compact non-native monomer with low conformational stability, which originates partially unfolded monomeric species with a high tendency for ordered aggregation into amyloid fibrils. Thus, partial unfolding and conformational fluctuations of molecular species with marginal thermodynamic stability may play a crucial role on amyloid formation in vivo.  相似文献   

12.
Self-assembly of the human plasma protein transthyretin (TTR) into unbranched insoluble amyloid fibrils occurs as a result of point mutations that destabilize the molecule, leading to conformational changes. The tertiary structure of native soluble TTR and many of its disease-causing mutants have been determined. Several independent studies by X-ray crystallography have suggested structural differences between TTR variants which are claimed to be of significance for amyloid formation. As these changes are minor and not consistent between the studies, we have compared all TTR structures available at the protein data bank including three wild-types, three non-amyloidogenic mutants, seven amyloidogenic mutants and nine complexes. The reference for this study is a new 1.5 A resolution structure of human wild-type TTR refined to an R-factor/R-free of 18.6 %/21.6 %. The present findings are discussed in the light of the previous structural studies of TTR variants, and show the reported structural differences to be non-significant.  相似文献   

13.
Human transthyretin (TTR) is an amyloidogenic protein whose mild amyloidogenicity is enhanced by many point mutations affecting considerably the amyloid disease phenotype. To ascertain whether the high amyloidogenic potential of TTR variants may be explained on the basis of the conformational change hypothesis, an aim of this work was to determine structural alterations for five amyloidogenic TTR variants crystallized under native and/or destabilizing (moderately acidic pH) conditions. While at acidic pH structural changes may be more significant because of a higher local protein flexibility, only limited alterations, possibly representing early events associated with protein destabilization, are generally induced by mutations. This study was also aimed at establishing to what extent wild-type TTR and its amyloidogenic variants are intrinsically prone to β-aggregation. We report the results of a computational analysis predicting that wild-type TTR possesses a very high intrinsic β-aggregation propensity which is on average not enhanced by amyloidogenic mutations. However, when located in β-strands, most of these mutations are predicted to destabilize the native β-structure. The analysis also shows that rat and murine TTR have a lower intrinsic β-aggregation propensity and a similar native β-structure stability compared with human TTR. This result is consistent with the lack of in vitro amyloidogenicity found for both murine and rat TTR. Collectively, the results of this study support the notion that the high amyloidogenic potential of human pathogenic TTR variants is determined by the destabilization of their native structures, rather than by a higher intrinsic β-aggregation propensity.Protein misfolding and aggregation are involved in the pathogenesis of particularly relevant human deposition diseases, known as amyloidoses. In such diseases, normally soluble proteins undergo misfolding and become insoluble, causing the extracellular deposition of fibrillar aggregates (for reviews, see Ref. 1, 2). To date, more than 40 distinct human proteins have been associated with amyloidoses. For some of such proteins, including transthyretin (TTR),4 lysozyme, gelsolin, ApoAI, and ApoAII, fibrinogen A α-chain and cystatin C, the amyloidogenic potential is induced, or is enhanced as in the case of TTR (see below), by specific mutations. The most frequent hereditary amyloidoses are caused by the genetic variants of human TTR (2).TTR is a homotetramer of about 55 kDa involved in the transport of thyroxine in the extracellular fluids and in the co-transport of vitamin A, by forming a macromolecular complex with retinol-binding protein, the specific plasma carrier of retinol (35). Its three-dimensional structure is known at high resolution (6, 7). The structure is characterized by a large predominance of β-strands, and its four monomers are arranged according to a 222 symmetry, where one of the 2-fold symmetry axes of the molecule coincides with a long channel that transverses the entire tetramer and harbors two symmetrical binding sites for the thyroid hormone thyroxine. Each monomer contains eight β-strands (A-H), arranged in a β-sandwich of two four-stranded β-sheets, with a short α-helix connecting two of the eight β-strands. In the tetramer, the four monomers are organized as a dimer of dimers. Two monomers are held together, forming a stable dimer through a net of H-bond interactions involving the two external β-strands H and F. The two dimers associate back to back and form the tetramer, by interacting mostly through hydrophobic contacts between residues of the AB and GH loops.Normal TTR possesses an inherent potential, albeit low, to generate amyloid fibrils, giving rise to Senile Systemic Amyloidosis (SSA) in ∼25% of the population aged over 80 years (8). More than 100 point mutations are described for human TTR. Most of them are involved in the hereditary amyloidoses known as familial amyloidotic polyneuropathy (FAP) or cardiomyopathy (FAC) (9). Single point mutations enhance the amyloidogenicity of TTR, so that patients show an earlier age of onset and a faster disease progression compared with SSA patients. The observation that single point mutations can drastically influence the disease phenotype is particularly relevant. In fact, the study of pathogenic TTR variants may provide clues to the mechanism of their abnormal behavior leading to amyloid formation. Although amyloidogenic proteins in general may be structurally unrelated to each other, and lead to various pathological phenotypes in humans, the amyloid fibrils originating from different proteins share the common cross-β structure, consisting in continuous β-sheets lying parallel to the longitudinal axis of the fibril, with the constituent β-strands running perpendicular to this axis. Therefore, the amyloidogenic proteins have to undergo structural alterations to be able to generate the cross-β structure, i.e. new β-pairing interactions have to be established on the way to fibril formation. However, the molecular mechanisms underlying protein misfolding and aggregation into highly ordered fibrillar structures are not clarified definitely, although significant progress is recently been made toward their elucidation (1, 10, 11).Based on the seminal observation that the rates of aggregation into amyloid fibrils in vitro correlate with simple physico-chemical amino acid features (12), several algorithms were introduced in recent years to predict, with good success, the intrinsic β-aggregation propensities of protein and peptide sequences (for a review, see Ref. 13). The intrinsic β-aggregation propensity is a measure of the tendency polypeptide chains may have to aggregate into the amyloid structure, provided that aggregation proceeds from unstructured monomers. The prediction of intrinsic propensities to β-aggregation for amyloidogenic or non-amyloidogenic variants of the same sequence was used to explain in several instances their relative ability to speed up/slow down in vitro fibrillogenesis or the enhancement/reduction of their amyloidogenic potential in vivo (14). However, a high intrinsic aggregation propensity may not result in an actual aggregation, due to the protecting role of the ordered native structure (15, 16). Therefore, the amyloidogenic potential in the TTR variants may depend further on the change of stability in the native TTR tetramer induced by mutations. In particular, it remains to be clarified to what extent human TTR possesses an intrinsic propensity to β-aggregation, and whether amyloidogenic mutations enhance such a propensity, or only destabilize the TTR tetramer, thereby facilitating the misfolding and misassembly of a protein which is in itself prone to β-aggregation.With regard to the pathway from native to misfolded TTR and to amyloid aggregation, the results of a number of in vitro studies are consistent with the rate-limiting dissociation of the TTR tetramer, followed by misfolding of TTR monomers and their downhill polymerization to generate pathological aggregates (1725). The crystal structures of amyloidogenic TTR variants are generally well conserved (2630). Accordingly, the functional properties of the variants, such as the ability to interact with retinol-binding protein (5), are maintained, being consistent with the fact that large conformational changes are not induced by amyloidogenic mutations, at least under native-like conditions (11). In vitro studies have shown that a moderately acidic medium (pH 4–5) facilitates TTR fibrillogenesis (17) and that the extent of fibril formation is remarkably enhanced for amyloidogenic TTR variants in comparison to wild-type TTR (31). Recently, it has been shown by x-ray analysis that an acidic pH (4.6) causes a large local conformational change in an amyloidogenic TTR variant (I84S) affecting two subunits within the tetramer, which probably destabilizes the TTR tetramer (32). In contrast, no significant structural changes for wild-type TTR at pH 4.6 and for I84S TTR at neutral pH were found, suggesting that conformational changes associated with a destabilization of the TTR native state may be induced or enhanced in amyloidogenic TTR variants by partially denaturing conditions (32). Pursuing these observations, we extend here our investigation to include other amyloidogenic TTR variants in comparison to the wild-type protein, with the aim to unravel structural alterations that are possibly associated with an enhanced amyloidogenic potential, according to the conformational change hypothesis (11). In addition, we report the results of a computational analysis of the mutational effects on both the intrinsic propensity to β-aggregation and the stability of the native β-structure. The same analysis is performed on murine and rat TTRs, whose structural organizations are very similar to that of the human protein (33, 34).  相似文献   

14.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

15.
H A Lashuel  C Wurth  L Woo  J W Kelly 《Biochemistry》1999,38(41):13560-13573
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociation is lower than the barrier for wild-type transthyretin dissociation, which does not form fibrils under physiological conditions. The L55P-TTR tetramer is also very sensitive to acidic conditions, readily dissociating to form the monomeric amyloidogenic intermediate between pH 5.5-5.0 where the wild-type TTR adopts a nonamyloidogenic tetrameric structure. The formation of the L55P monomeric amyloidogenic intermediate involves subtle tertiary structural changes within the beta-sheet rich subunit as discerned from Trp fluorescence, circular dichroism analysis, and ANS binding studies. The assembly of the L55P-TTR amyloidogenic intermediate at physiological pH (pH 7.5) affords protofilaments that elongate with time. TEM studies suggest that the entropic barrier associated with filament assembly (amyloid fibril formation) is high in vitro, amyloid being defined by the laterally assembled four filament structure observed by Blake upon isolation of "fibrils" from the eye of a FAP patient. The L55P-TTR protofilaments formed in vitro bind Congo red and thioflavin T (albeit more weakly than the fibrils produced at acidic pH), suggesting that the structure observed probably represents an amyloid precursor. The structural continuum from misfolded monomer through protofilaments, filaments, and ultimately fibrils must be considered as a possible source of pathology associated with these diseases.  相似文献   

16.
M J Saraiva 《FEBS letters》2001,498(2-3):201-203
Over 70 transthyretin (TTR) mutations have been associated with hereditary amyloidoses, which are all autosomal dominant disorders with adult age of onset. TTR is the main constituent of amyloid that deposits preferentially in peripheral nerve giving rise to familial amyloid polyneuropathy (FAP), or in the heart leading to familial amyloid cardiomyopathy. Since the beginning of this decade the central question of these types of amyloidoses has been why TTR is an amyloidogenic protein with clinically heterogeneous pathogenic consequences. As a result of amino acid substitutions, conformational changes occur in the molecule, leading to weaker subunit interactions of the tetrameric structure as revealed by X-ray studies of some amyloidogenic mutants. Modified soluble tetramers exposing cryptic epitopes seem to circulate in FAP patients as evidenced by antibody probes recognizing specifically TTR amyloid fibrils, but what triggers dissociation into monomeric and oligomeric intermediates of amyloid fibrils is largely unknown. Avoiding tetramer dissociation and disrupting amyloid fibrils are possible avenues of therapeutic intervention based on current molecular knowledge of TTR amyloidogenesis and fibril structure.  相似文献   

17.
Urea denaturation studies were carried out as a function of transthyretin (TTR) concentration to quantify the thermodynamically linked quaternary and tertiary structural stability and to improve our understanding of the relationship between mutant folding energetics and amyloid disease phenotype. Urea denaturation of TTR involves at least two equilibria: dissociation of tetramers into folded monomers and monomer unfolding. To deal with the thermodynamic linkage of these equilibria, we analyzed concentration-dependent denaturation data by globally fitting them to an equation that simultaneously accounts for the two-step denaturation process. Using this method, the quaternary and tertiary structural stabilities of well-behaved TTR sequences, wild-type (WT) TTR and the disease-associated variant V122I, were scrutinized. The V122I variant is linked to late onset familial amyloid cardiomyopathy, the most common familial TTR amyloid disease. V122I TTR exhibits a destabilized quaternary structure and a stable tertiary structure relative to those of WT TTR. Three other variants of TTR were also examined, L55P, V30M, and A25T TTR. The L55P mutation is associated with the most aggressive familial TTR amyloid disease. L55P TTR has a complicated denaturation pathway that includes dimers and trimers, so globally fitting its concentration-dependent urea denaturation data yielded error-laden estimates of stability parameters. Nevertheless, it is clear that L55P TTR is substantially less stable than WT TTR, primarily because its tertiary structure is unstable, although its quaternary structure is destabilized as well. V30M is the most common mutation associated with neuropathic forms of TTR amyloid disease. V30M TTR is certainly destabilized relative to WT TTR, but like L55P TTR, it has a complex denaturation pathway that cannot be fit to the aforementioned two-step denaturation model. Literature data suggest that V30M TTR has stable quaternary structure but unstable tertiary structure. The A25T mutant, associated with central nervous system amyloidosis, is highly aggregation-prone and exhibits drastically reduced quaternary and tertiary structural stabilities. The observed differences in stability among the disease-associated TTR variants highlight the complexity and heterogeneity of TTR amyloid disease, an observation that has important implications for the treatment of these maladies.  相似文献   

18.

Background

Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated.

Methodology/Principal Findings

We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR) amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16±2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8–16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway.

Conclusions/Significance

Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.  相似文献   

19.
Wiseman RL  Powers ET  Kelly JW 《Biochemistry》2005,44(50):16612-16623
Amyloid diseases are caused by the aberrant assembly of a protein in the extracellular space. Folded proteins are not amyloidogenic; however, the native state is generally in equilibrium with a minor population of unfolded or partially folded aggregation-competent conformers outside of the cell. Understanding how the partially unfolded conformers kinetically partition between the competing refolding and aggregation pathways provides insight into how misfolding, which occurs continuously, becomes pathogenic. Towards this end, we have previously studied the amyloidogenicity of transthyretin (TTR), a human beta-sheet-rich homotetrameric protein that must undergo rate-limiting tetramer dissociation and partial monomer unfolding to misassemble into amyloid and other aggregates. We demonstrate herein that TTR homotetramers reassemble by an unusual monomer-dimer-trimer-tetramer (MDRT) pathway. Therefore, the rate of every step in the reassembly pathway is dependent on the concentration of folded TTR monomer. Partitioning soluble TTR monomers between the reassembly pathway and the aggregation pathway should therefore depend on the relative concentrations of aggregates and assembly intermediates. Aggregate clearance is envisioned to play an important role in the partitioning of protein in vivo, where partitioning to the aggregation pathway becomes increasingly favorable under conditions where the concentration of aggregates is increased because aggregate clearance is slow relative to the rate of aggregation. This shift from efficient to inefficient aggregate clearance could occur with aging, offering an explanation for the age-associated nature of these neurodegenerative diseases.  相似文献   

20.
Hill SE  Miti T  Richmond T  Muschol M 《PloS one》2011,6(4):e18171
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号