首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent advances in the development of new microscopy techniques with a sensitivity of a single molecule have gained access to essentially new types of information obtainable from imaging biomolecular samples. These methodologies are analysed here in terms of their applicability to the in vivo visualization of cellular processes on the molecular scale, in particular of processes in cell membranes. First examples of single molecule microscopy on cell membranes revealed new basic insight into the lateral organization of the plasma membrane, providing the captivating perspective of an ultrasensitive methodology as a general tool to study local processes and heterogeneities in living cells.  相似文献   

2.
Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally applicable tool to immobilize biological membrane vesicles of various size and lipid composition. Importantly, membrane proteins immobilized in the hydrogel as well as soluble proteins are fully active. The triggered opening of the mechanosensitive channel of large conductance (MscL) reconstituted in giant unilamellar vesicles (GUVs) was followed in time on single GUVs. Thus, kinetic studies of vectorial transport processes across biological membranes can be assessed on single, hydrogel immobilized, GUVs. Furthermore, protein translocation activity by the membrane embedded protein conducting channel of bacteria, SecYEG, in association with the soluble motor protein SecA was quantitatively assessed in bulk and at the single vesicle level in the hydrogel. This technique provides a new way to investigate membrane proteins in their native environment at the single molecule level by means of fluorescence microscopy.  相似文献   

3.
Self-organized lipid bilayers together with proteins are the essential building blocks of biological membranes. Membranes are associated with all living systems as they make up cell boundaries and provide basic barriers to cellular organelles. It is of interest to study the dynamics of individual molecules in cell membranes as the mechanism of how biological membranes function at the single molecule remains to be elucidated. In this letter we describe a study in which we incubate rat basophilic leukemia cells with a fluorescently labeled cell membrane component on a surface containing zero-mode waveguides (ZMWs). We used the ZMW to confine fluorescent excitation to an approximately 100-nm region of the membrane to monitor lipid diffusion along the cellular membrane. We showed that confinement with a ZMW largely reduced fluorescent contributions from the cytosolic pool that is present when using a more standard technique such as laser-induced confocal microscopy. We show that optical confinement with ZMWs is a facile way to probe dynamic processes on the membrane surface.  相似文献   

4.
For the analysis of membrane transport processes two single molecule methods are available that differ profoundly in data acquisition principle, achievable information, and application range: the widely employed electrical single channel recording and the more recently established optical single transporter recording. In this study dense arrays of microscopic horizontal bilayer membranes between 0.8 microm and 50 microm in diameter were created in transparent foils containing either microholes or microcavities. Prototypic protein nanopores were formed in bilayer membranes by addition of Staphylococcus aureus alpha-hemolysin (alpha-HL). Microhole arrays were used to monitor the formation of bilayer membranes and single alpha-HL pores by confocal microscopy and electrical recording. Microcavity arrays were used to characterize the formation of bilayer membranes and the flux of fluorescent substrates and inorganic ions through single transporters by confocal microscopy. Thus, the unitary permeability of the alpha-HL pore was determined for calcein and Ca(2+) ions. The study paves the way for an amalgamation of electrical and optical single transporter recording. Electro-optical single transporter recording could provide so far unresolved kinetic data of a large number of cellular transporters, leading to an extension of the nanopore sensor approach to the single molecule analysis of peptide transport by translocases.  相似文献   

5.
Ritchie K  Spector J 《Biopolymers》2007,87(2-3):95-101
Since the advent of single particle/molecule microscopies, researchers have applied these techniques to understanding the fluid membranes of cells. By observing diffusion of membrane proteins and lipids in live cell membranes of eukaryotic cells, it has been found that membranes contain a mosaic of fluid compartments. Such structure may be instrumental in understanding key characteristics of the membrane. Recent single molecule observations on prokaryotic cell membranes will also be discussed.  相似文献   

6.
The ability to study the structure and function of cell membranes and membrane components is fundamental to understanding cellular processes. This requires the use of methods capable of resolving structures with nanometer-scale resolution in intact or living cells. Although fluorescence microscopy has proven to be an extremely versatile tool in cell biology, its diffraction-limited resolution prevents the investigation of membrane compartmentalization at the nanometer scale. Near-field scanning optical microscopy (NSOM) is a relatively unexplored technique that combines both enhanced spatial resolution of probing microscopes and simultaneous measurement of topographic and optical signals. Because of the very small nearfield excitation volume, background fluorescence from the cytoplasm is effectively reduced, enabling the visualization of nano-scale domains on the cell membrane with single molecule detection sensitivity at physiologically relevant packing densities. In this article we discuss technological aspects concerning the implementation of NSOM for cell membrane studies and illustrate its unique advantages in terms of spatial resolution, background suppression, sensitivity, and surface specificity for the study of protein clustering at the cell membrane. Furthermore, we demonstrate reliable operation under physiological conditions, without compromising resolution or sensitivity, opening the road toward truly live cell imaging with unprecedented detail and accuracy.  相似文献   

7.
Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.  相似文献   

8.
Rafts in cell membranes have been a subject of much debate and many models have been proposed for their existence and functional significance. Recent studies using Forster's resonance energy transfer (FRET) microscopy have provided one of the first glimpses into the organization of putative raft components in living cell membranes. Here we discuss how and why FRET microscopy provides an appropriate non-invasive methodology to examine organization of raft components in cell membranes; a combination of homo and hetero-FRET microscopy in conjunction with detailed theoretical analyses are necessary for characterizing structures at nanometre scales. Implications of the physical characteristics of the organization of GPI-anchored proteins in cell membranes suggest new models of lipid-based assemblies in cell membranes based on active principles.  相似文献   

9.
Amyloid‐β peptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single‐molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid‐β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar‐to‐picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single‐molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ‐induced toxicity, is included in hopes of inspiring future development in this area of research.  相似文献   

10.
The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms.  相似文献   

11.
In recent years, the development of fast and highly sensitive microscopy has changed the way of thinking of cell biologists: it became more and more important to study the structural origin for cellular function, and industry turned its attention to the improvement of the required instruments. Optical microscopy has now reached a milestone in sensitivity by resolving the signal of a single, fluorescence-labeled biomolecule within a living cell. First steps towards these pioneering studies were set by methods developed in the late eighties for tracking single biomolecules labeled with fluorescent latex spheres or gold-particles. Meanwhile, a time-resolution of milliseconds for imaging weakly fluorescent cellular structures like small organelles, vesicles, or even single molecules is state-of-the-art. The advances in the fields of microscopy brought new cell biological questions into reach. The investigation of a single fluorescent molecule-or simultaneously of an ensemble of individual molecules-provides principally new information, which is generally hidden in ensemble-averaged signals of molecules. In this paper we describe strategies how to make use of single molecule trajectories for deducing information about nanoscopic structures in a live cell context. In particular, we focus our discussion on elucidating the plasma membrane organization by single molecule tracking. A diffusing membrane constituent--e.g. a protein or a lipid--experiences a manifold of interactions on its path: the most rapid interactions represent the driving force for free diffusion; stronger or correlated interactions can be frequently observed as subdiffusive behavior. Correct interpretation of the data has the potential to shine light on this enigmatic organelle, where membrane rafts, protein microdomains, fences and pickets still frolic through the text-book sketches. We summarize available analytical models and point out potential pitfalls, which may result in quantitative or three even qualitative misinterpretations.  相似文献   

12.
Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 µm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems.  相似文献   

13.
Summary CD63 is a 53 kDa lysosomal membrane glycoprotein that has been identified as a platelet activation molecule. We investigated the localization of CD63 antigen in platelets and in three megakaryocytic cell lines (K562, HEL and CMK11-5) using flow cytometry and immunoelectron microscopy. Flow cytometry showed that a monoclonal antibody directed against CD63 bound to 8.1% of unstimulated platelets and 59.2% of thrombin-stimulated platelets. Immunoelectron microscopy demonstrated that CD63 antigen was distributed randomly inside unstimulated platelets, while it was localized in the open canalicular system of washed platelets and on the cell membranes of thrombin-stimulated platelets. Flow cytometry detected CD63 on 16.4% of HEL cells, 31.2% of K562 cells, and 43.2% of CMK11-5 cells. Immunoelectron microscopy demonstrated that CD63 was localized in the granules and on the surface membranes of HEL cells, in the vesicles and on the membranes of K562 cells, and in the granules and vesicles as well as on the membranes of CMK11-5 cells. Thus, the distribution of CD63 differed markedly among these three megakaryocytic cell lines.  相似文献   

14.
Because cell‐specific aptamers have high potential for biomedical applications, investigation of the interaction between cell and its aptamers may be of key importance for an improved understanding of biochemical processes. Herein, the interaction between human lung adenocarcinoma A549 cell and its four aptamers was explored using single‐molecule force spectroscopy (SMFS). The values of the unbinding force varied from 117.1 to 171.0 pN at the loading rate of 1.8 × 105 pN/s. Based on the dependence of singe molecule force on the atomic force microscopy loading rate, the corresponding kinetic parameters were obtained. The results revealed two activation barriers and two transient states in the unbinding process of aptamer/cell interaction. More importantly, the binding sites on A549 cells with its four aptamers were defined to be different using SMFS and flow cytometry. This work demonstrated that SMFS can be used as a powerful tool for exploring the aptamer/cell binding behavior at the single‐molecule level, and may provide valuable information for the design and application of aptamer probes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The introduction of a new antigenic determinant, 2,4-dinitrophenyl-aminocaproyl-phosphatidylethanolamine (DNP-Cap-PE), into the surface membranes of intact human erythrocytes is described. Fresh cells were incubated in the presence of liposomes composed of 10% DNP-Cap-PE, 5% stearylamine, 20% lysolecithin, and 65% lecithin. Such liposome-treated erythrocytes are shown to be susceptible to immune lysis by anti-DNP serum in the presence of complement. Uptake of DNP-Cap-PE by erythrocyte membranes is also demonstrated by immunofluorescence using indirect staining with rabbit anti-DNP serum followed by fluroescein-conjugated goat anti-rabbit IgG and by electron microscopy using ferritin-conjugated antibody. Antigen uptake did not occur at low temperatures or from vesicles lacking lysolecithin and stearylamine. Fluorescence microscopy shows that the antigen-antibody complexes are free to diffuse over the cell surface, eventually coalescing into a single area on the cell membrane. Electron microscopy suggests that a substantial proportion of the lipid antigen is incorporated by fusion of vesicles with the cell membrane. There are indications that vesicle treatment causes a small proportion of cells to invaginate.  相似文献   

16.
Monoclonal antibodies were generated to the proteins in myelin-like membranes isolated from the nerve cords of the earthworm,Lumbricus terrestris. One of these showing cross-reactivity to 30–32 and 40 kDa proteins was shown by immunofluorescence microscopy and immunogold electron microscopy to be bound primarily to glial cell processes and their membranes and the myelin-like layers. This antibody cross-reacted with proteins of 60–65, 42, and 40 kDa in crayfish (Procambarus clarki) nerve cord homogenates. Localization by immunoelectron microscopy showed the antibody to be bound exclusively to the membranes of the glial processes ensheathing the axons in the crayfish nerve cord. Thus, the proteins in earthworm and crayfish glial cell membranes have some epitopes in common. We suggest that this may represent an evolutionary conservation of these proteins. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

17.
Here we discuss the application of scanning fluorescence correlation spectroscopy (SFCS) using continuous wave excitation to analyze membrane dynamics. The high count rate per molecule enables the study of very slow diffusion in model and cell membranes, as well as the application of two-foci fluorescence cross-correlation spectroscopy for parameter-free determination of diffusion constants. The combination with dual-color fluorescence cross-correlation spectroscopy with continuous or pulsed interleaved excitation allows binding studies on membranes. Reduction of photobleaching, higher reproducibility, and stability compared to traditional FCS on membranes, and the simple implementation in a commercial microscopy setup make SFCS a valuable addition to the pool of fluorescence fluctuation techniques.  相似文献   

18.
Autophagosomes and their precursors are best defined by electron microscopy but may also be traced in living cells based on the distribution of specific autophagy molecules. LC3, the most commonly examined autophagy marker in mammalian cells, labels structures that are frequently manifested as dots or rings using light microscopy; however, the nature of these structures is not entirely clear. We reported here a novel approach to examine the LC3-positive compartment in cell-free lysates, which revealed that they were actually tubulovesicular structures with considerable heterogeneity. Using affinity purification, we isolated these membranes for electron microscopy, which indicated that they possessed ultrastructural features consistent with autophagosomal membranes at various maturation stages. Further biochemical and proteomics analyses demonstrated the presence of multiple autophagy-related and other functional molecules. The different distribution patterns of Atg5, Atg16, Atg9, and p62/SQSTM1 on the LC3-positive compartment provided new clues on how these molecules might be involved in the dynamics of the autophagosomal membranes. Finally, several morphologically unique groups of LC3-positive membranes were categorized. Their topological configurations suggested that double-membrane vesicles could be derived from single membrane compartments via different means, including tubule-to-vesicle conversion, whose presence was supported by live cell imaging. These findings thus provide new information on the dynamics of the autophagosomal compartment.  相似文献   

19.
Collisions between two lamellar processes extended from a single locomoting cultured cell were examined by time-lapse cinemicrography and transmission electron microscopy. In most cases after contact the forward movement of either one or both of the lamellae ceased and was followed by a phase of retraction of the lamellae resulting in the breaking of the contact. The events correspond well to the contact inhibition of movement expressed when two cells collide. The similarity is also shown in the ultrastructure of the cell contacts which exhibit a close parallel arrangement of the apposed cell membranes and an alignment of microfilaments in the regions of the cytoplasm at the contacts.  相似文献   

20.
Lymphocytes utilize adhesion to navigate in the body and to transiently interact with a variety of potential antigen presenting cells. Interactions of adhesion molecules are governed by the law of mass action and the less understood rules of apposed biological membranes. Biochemical parameters such as adhesion molecule affinity only tell part of the story. Factors such as lateral mobility, membrane alignment and cytoskeletal interactions are equally important in determining the final outcome. Therefore it is important to determine mechanisms by which the properties of cell membranes and the cytoskeleton reinforce or hinder adhesion molecule interactions. Work from my lab has shown that one mechanism by which lymphocyte adhesion molecules cooperate is to align adhering membranes with nanometer precision. Here, I discuss a model for LFA-1 regulation that is dependent on three independent processes: LFA-1 lateral mobility, ligand induced generation of a small amount of high affinity LFA-1 and local membrane alignment. I propose that coordination of these processes allows rapid interconversion between stable adhesion and detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号