首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing ‘introns-early’ versus ‘introns-late’ controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations.  相似文献   

2.
Spliceosomal introns are hallmarks of most eukaryotic genomes and are excised from premature mRNAs by a spliceosome that is among the largest, and most complex, molecular machine in cells. The divergent unicellular eukaryote Giardia intestinalis, the causative agent of giardiasis, also possesses spliceosomes, but only four canonical (cis-spliced) introns have been identified in its genome to date. We demonstrate that this organism has a novel form of spliceosome-mediated trans-splicing of split introns that is essential for generating mature mRNAs for at least two important genes: one encoding a heat shock protein 90 (HSP90), which controls the conformation of a suite of cellular proteins, and the other encoding a dynein molecular motor protein, involved in the motility of eukaryotic flagella. These split introns have properties that distinguish them from other trans-splicing systems known within eukaryotes, suggesting that Giardia independently evolved a unique system to splice split introns.  相似文献   

3.
Origin and evolution of spliceosomal introns   总被引:1,自引:0,他引:1  
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section.  相似文献   

4.
Recently, molecular biologists have sequenced about a dozen bacterial genomes and the first eukaryotic genome. We can now obtain answers to detailed questions about the complete set of genes of an organism. Bioinformatics methods are increasingly used for attaching biological knowledge to long lists of genes, assigning genes to biological pathways, comparing the gene sets of different species, identifying specificity factors, and describing sets of highly conserved proteins common to all domains of life. Substantial progress has recently been made in the availability of primary and added-value databases, in the development of algorithms and of network information services for genome analysis. The pharmaceutical industry has greatly benefited from the accumulation of sequence data through the identification of targets and candidates for the development of drugs, vaccines, diagnostic markers and therapeutic proteins.  相似文献   

5.
Although spliceosomal introns are an abundant landmark in eukaryotic genomes, the nuclear genome of the divergent eukaryote Giardia intestinalis, the causative agent of giardiasis, has been considered as “intron-poor” with only five canonical (cis-spliced) introns. However, three research groups (including ours) have independently reported a novel class of spliceosomal introns in the G. intestinalis genome. Three protein-coding genes are split into pieces in the G. intestinalis genome, and each of the partial coding regions was independently transcribed into polyadenylated premature mRNAs (pre-mRNAs). The two pre-mRNAs directly interact with each other by an intermolecular-stem structure formed between their non-coding portions, and are then processed into mature mRNAs by spliceosome-mediated trans-splicing. Here, we summarize the recently published works on split introns (“splintrons”) in the G. intestinalis genome, and then provide our speculation on the functional property of the Giardia spliceosomes based on the putative ratio of splintrons to canonical introns. Finally, we discuss a scenario for the transition from typical GT-AG boundaries to non-typical AT-AC boundaries in a particular splintron of Giardia.  相似文献   

6.
There are ∼1.4 million organisms on this planet that have been described morphologically but there is no comparable coverage of biodiversity at the molecular level. Little more than 1% of the known species have been subject to any molecular scrutiny and eukaryotic genome projects have focused on a group of closely related model organisms. The past year, however, has seen an ∼80% increase in the number of species represented in sequence databases and the completion of the sequencing of three prokaryotic genomes. Large-scale sequencing projects seem set to begin coverage of a wider range of the eukaryotic diversity, including green plants, microsporidians and diplomonads.  相似文献   

7.
The past few years have seen significant advances in our understanding of eukaryotic genomes. In the field of parasitology, this is best exemplified by the application of genome mapping techniques to the study of genome structure and function in the protozoan parasite, Leishmania. Although much is known about the organism and the diseases it causes, molecular genetics has only recently begun to play a major part in elucidating some of the unusual characteristics of this interesting parasite. Mapping of the small (35 Mb) genome and determination of the functional role of genes by the application of in vitro homologous gene targeting techniques are revealing novel avenues for the development of prophylactic measures.  相似文献   

8.
What caused spliceosomal introns gain remains an unsolved problem. To this, defining what spliceosomal introns arise from is critical. Here, the introns density of the genomes is calculated for four species, indicating:(1) sex chromosomes in mammals have lower intron densities, (2) despite that, the proportion of UTRs (untranslated regions) with introns in sex chromosomes is higher than other ones, and (3) AT content of introns is more similar to that of intergenic regions when these regions comprise the majority of a chromosome, and more similar to that of exons, when exons are the majority of the chromosome. On the other hand, introns have been clearly demonstrated to invade genetic sequences in recent times while sex chromosomes evolved from a pair of autosomes within the last 300 millions years. One main difference between sex chromosomes and autosomes in mammalian is that sex chromosomes recombination stopped. Thus, recombination might be the main determinant for eukaryotes gaining spliceosomal introns. To further prove that and avoid giving weak signal, the whole genomes from eight eukaryotic species are analyzed and present strong signal for above the trend (3) in three species (t-test, P = 0.55 for C. elegans, P = 0.72 for D. melanogaster and P = 0.83 for A. thaliana). These results suggest that the genome-wide coincidence as above (3) can only be caused by the large-scale random unequal crossover in eukaryote meiosis, which might have fueled spliceosomal introns but hardly occurred in prokaryotes.  相似文献   

9.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

10.
11.
Few genes in the divergent eukaryote Trichomonas vaginalis have introns, despite the unusually large gene repertoire of this human-infective parasite. These introns are characterized by extended conserved regulatory motifs at the 5' and 3' boundaries, a feature shared with another divergent eukaryote, Giardia lamblia, but not with metazoan introns. This unusual characteristic of T. vaginalis introns led us to examine spliceosomal small nuclear RNAs (snRNAs) predicted to mediate splicing reactions via interaction with intron motifs. Here we identify T. vaginalis U1, U2, U4, U5, and U6 snRNAs, present predictions of their secondary structures, and provide evidence for interaction between the U2/U6 snRNA complex and a T. vaginalis intron. Structural models predict that T. vaginalis snRNAs contain conserved sequences and motifs similar to those found in other examined eukaryotes. These data indicate that mechanisms of intron recognition as well as coordination of the two catalytic steps of splicing have been conserved throughout eukaryotic evolution. Unexpectedly, we found that T. vaginalis spliceosomal snRNAs lack the 5' trimethylguanosine cap typical of snRNAs and appear to possess unmodified 5' ends. Despite the lack of a cap structure, U1, U2, U4, and U5 genes are transcribed by RNA polymerase II, whereas the U6 gene is transcribed by RNA polymerase III.  相似文献   

12.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

13.
The near simultaneous radiation of the major eukaryotic evolutionary assemblages — plants, animals, fungi, and at least three other complex protist assemblages worthy of ‘kingdom level’ status — was preceded by the divergence of many independent protist lineages. The earliest branches are represented by organisms that do not contain mitochondria or plastids, suggesting that the primitive eukaryotic state did not include these organelles. New information about nuclear-coded proteins that localize in the mitochondrion, however, suggests that the ancestral symbionts for mitochondria were present in the first eukaryotes. Phylogenetic support for this hypothesis is persuasive but it is not possible to account for the relative times of divergence for mitochondria and their ancestral symbionts relative to eukaryotic branching patterns inferred from nuclear genes.  相似文献   

14.
Accumulating molecular data, particularly complete organellar genome sequences, continue to advance our understanding of the evolution of mitochondrial and chloroplast DNAs. Although the notion of a single primary origin for each organelle has been reinforced, new models have been proposed that tie the acquisition of mitochondria more closely to the origin of the eukaryotic cell per se than is implied by classic endosymbiont theory. The form and content of the ancestral proto-mitochondrial and proto-chloroplast genomes are becoming clearer but unusual patterns of organellar genome structure and organization continue to be discovered. The 'single-gene circle' arrangement recently reported for dinoflagellate chloroplast genomes is a notable example of a highly derived organellar genome.  相似文献   

15.
16.
Spliceosomal introns are noncoding sequences that separate exons in eukaryotic genes and are removed from pre-messenger RNAs by the splicing machinery. Their origin has remained a mystery in biology since their discovery because intron gains seem to be infrequent in many eukaryotic lineages. Although a few recent intron gains have been reported, none of the proposed gain mechanisms can convincingly explain the high number of introns in present-day eukaryotic genomes. Here we report on particular spliceosomal introns that share high sequence similarity and are reminiscent of introner elements. These elements multiplied in unrelated genes of six fungal genomes and account for the vast majority of intron gains in these fungal species. Such introner-like elements (ILEs) contain all typical characteristics of regular spliceosomal introns (RSIs) but are longer and predicted to harbor more stable secondary structures. However, dating of multiplication events showed that they degenerate in sequence and length within 100,000 years to eventually become indistinguishable from RSIs. We suggest that ILEs not only account for intron gains in six fungi but also in ancestral eukaryotes to give rise to most RSIs by a yet unknown multiplication mechanism.  相似文献   

17.
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and allows researchers working with other organisms to tap into experimental advantages inherent in the yeast system and learn from functionally characterized yeast gene products which are their proteins of interest. In addition, the yeast post-genome sequence era is serving as a testing ground for powerful new technologies, and proven experimental approaches are being applied for the first time in a comprehensive fashion on a complete eukaryotic gene repertoire.  相似文献   

18.
Heterochromatin has been traditionally regarded as a genomic wasteland, but in the last three decades extensive genetic and molecular studies have shown that this ubiquitous component of eukaryotic chromosomes may perform important biological functions. In D. melanogaster, about 30 genes that are essential for viability and/or fertility have been mapped to the heterochromatin of the major autosomes. Thus far, the known essential genes exhibit a peculiar molecular organization. They consist of single-copy exons, while their introns are comprised mainly of degenerate transposons. Moreover, about one hundred predicted genes that escaped previous genetic analyses have been associated with the proximal regions of chromosome arms but it remains to be determined how many of these genes are actually located within the heterochromatin. In this overview, we present available data on the mapping, molecular organization and function of known vital genes embedded in the heterochromatin of chromosomes 2 and 3. Repetitive loci, such as Responder and the ABO elements, which are also located in the heterochromatin of chromosome 2, are not discussed here because they have been reviewed in detail elsewhere.  相似文献   

19.
Infection-related development in the rice blast fungus Magnaporthe grisea   总被引:8,自引:0,他引:8  
Recent developments have been made in the identification of signal transduction pathways and gene products involved in the infection-related development of the rice blast fungus, Magnaporthe grisea. It has been established that cAMP-dependent and MAP kinase-mediated signaling are both critical for appressorium morphogenesis and function. These signaling pathways may act downstream of hydrophobin-mediated surface sensing by the growing germ tube. Several genes have been identified that are required for invasive growth of M. grisea including genes that allow adaptation of fungal metabolism to growth within plant tissues.  相似文献   

20.
Intron density in eukaryote genomes varies by more than three orders of magnitude, so there must have been extensive intron gain and/or intron loss during evolution. A favored and partial explanation for this range of intron densities has been that introns have accumulated stochastically in large eukaryote genomes during their evolution from an intron-poor ancestor. However, recent studies have shown that some eukaryotes lost many introns, whereas others accumulated and/or gained many introns. In this article, we discuss the growing evidence that these differences are subject to selection acting on introns depending on the biology of the organism and the gene involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号