首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The superfamily of plant and bacterial type III polyketide synthases (PKSs) produces diverse metabolites with distinct biological functions. PKS18, a type III PKS from Mycobacterium tuberculosis, displays an unusual broad specificity for aliphatic long-chain acyl-coenzyme A (acyl-CoA) starter units (C(6)-C(20)) to produce tri- and tetraketide pyrones. The crystal structure of PKS18 reveals a 20 A substrate binding tunnel, hitherto unidentified in this superfamily of enzymes. This remarkable tunnel extends from the active site to the surface of the protein and is primarily generated by subtle changes of backbone dihedral angles in the core of the protein. Mutagenic studies combined with structure determination provide molecular insights into the structural elements that contribute to the chain length specificity of the enzyme. This first bacterial type III PKS structure underlines a fascinating example of the way in which subtle changes in protein architecture can generate metabolite diversity in nature.  相似文献   

2.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

3.
Yu D  Xu F  Zeng J  Zhan J 《IUBMB life》2012,64(4):285-295
Polyketides represent an important class of biologically active and structurally diverse compounds in nature. They are synthesized from acyl-coenzyme A substrates by polyketide synthases (PKSs). PKSs are classified into three groups: types I, II, and III. This article introduces recent studies on type III PKSs identified from plants, bacteria, and fungi, and describes the catalytic functions of these enzymes in detail. Plant type III PKSs have been widely studied, as exemplified by chalcone synthase, which plays an important role in the synthesis of plant metabolites. Bacterial type III PKSs fall into five groups, many of which were identified from Streptomyces, a genus that has been well known for its production of bioactive molecules and genetic alterability. Although it was believed that type III PKSs exist exclusively in plants and bacteria, recent fungal genome sequencing projects and biochemical studies revealed the presence of type III PKSs in filamentous fungi, which provides a new chance to study fungal secondary metabolism and synthesize "unnatural" natural products. Type III PKSs have been used for the biosynthesis of novel molecules through precursor-directed and structure-based mutagenesis approaches.  相似文献   

4.
Cannabinoids, flavonoids, and stilbenoids have been identified in the annual dioecious plant Cannabis sativa L. Of these, the cannabinoids are the best known group of this plant's natural products. Polyketide synthases (PKSs) are responsible for the biosynthesis of diverse secondary metabolites, including flavonoids and stilbenoids. Biosynthetically, the cannabinoids are polyketide substituted with terpenoid moiety. Using an RT-PCR homology search, PKS cDNAs were isolated from cannabis plants. The deduced amino acid sequences showed 51%-73% identity to other CHS/STS type sequences of the PKS family. Further, phylogenetic analysis revealed that these PKS cDNAs grouped with other non-chalcone-producing PKSs. Homology modeling analysis of these cannabis PKSs predicts a 3D overall fold, similar to alfalfa CHS2, with small steric differences on the residues that shape the active site of the cannabis PKSs.  相似文献   

5.
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites repetitively (iterative) or by using these catalytic domains only once (modular) during the entire biosynthetic process. The largest open reading frame in Mycobacterium tuberculosis, pks12, was recently proposed to be involved in the biosynthesis of mannosyl-beta-1-phosphomycoketide (MPM). The PKS12 protein contains two complete sets of modules and has been suggested to synthesize mycoketide by five alternating condensations of methylmalonyl and malonyl units by using an iterative mode of catalysis. The bimodular iterative catalysis would require transfer of intermediate chains from acyl carrier protein domain of module 2 to ketosynthase domain of module 1. Such bimodular iterations during PKS biosynthesis have not been characterized and appear unlikely based on recent understanding of the three-dimensional organization of these proteins. Moreover, all known examples of iterative PKSs so far characterized involve unimodular iterations. Based on cell-free reconstitution of PKS12 enzymatic machinery, in this study, we provide the first evidence for a novel "modularly iterative" mechanism of biosynthesis. By combination of biochemical, computational, mutagenic, analytical ultracentrifugation and atomic force microscopy studies, we propose that PKS12 protein is organized as a large supramolecular assembly mediated through specific interactions between the C- and N-terminus linkers. PKS12 protein thus forms a modular assembly to perform repetitive condensations analogous to iterative proteins. This novel intermolecular iterative biosynthetic mechanism provides new perspective to our understanding of polyketide biosynthetic machinery and also suggests new ways to engineer polyketide metabolites. The characterization of novel molecular mechanisms involved in biosynthesis of mycobacterial virulent lipids has opened new avenues for drug discovery.  相似文献   

6.
Microbial type III polyketide synthases (PKSs) have revealed remarkable mechanistic as well as functional versatility. Recently, a type III PKS homolog from Azotobacter has been implicated in the biosynthesis of resorcinolic lipids, thus adding a new functional significance to this class of proteins. Here, we report the structural and mutational investigations of a novel type III PKS protein from Neurospora crassa involved in the biosynthesis of resorcinolic metabolites by utilizing long chain fatty acyl-CoAs. The structure revealed a long hydrophobic tunnel responsible for its fatty acyl chain length specificity resembling that of PKS18, a mycobacterial type III PKS. Structure-based mutational studies to block the tunnel not only altered the fatty acyl chain specificity but also resulted in change of cyclization pattern affecting the product profile. This first structural characterization of a resorcinolic lipid synthase provides insights into the coordinated functioning of cyclization and a substrate-binding pocket, which shows mechanistic intricacy underlying type III PKS catalysis.  相似文献   

7.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

8.
Chalcone synthase (CHS) related type III plant polyketide synthases (PKSs) are likely to be involved in the biosynthesis of diarylheptanoids (e.g. curcumin and polycyclic phenylphenalenones), but no such activity has been reported. Root cultures from Wachendorfia thyrsiflora (Haemodoraceae) are a suitable source to search for such enzymes because they synthesize large amounts of phenylphenalenones, but no other products that are known to require CHSs or related enzymes (e.g. flavonoids or stilbenes). A homology-based RT-PCR strategy led to the identification of cDNAs for a type III PKS sharing only approximately 60% identity with typical CHSs. It was named WtPKS1 (W. thyrsiflora polyketide synthase 1). The purified recombinant protein accepted a large variety of aromatic and aliphatic starter CoA esters, including phenylpropionyl- and side-chain unsaturated phenylpropanoid-CoAs. The simplest model for the initial reaction in diarylheptanoid biosynthesis predicts a phenylpropanoid-CoA as starter and a single condensation reaction to a diketide. Benzalacetones, the expected release products, were observed only with unsaturated phenylpropanoid-CoAs, and the best results were obtained with 4-coumaroyl-CoA (80% of the products). With all other substrates, WtPKS1 performed two condensation reactions and released pyrones. We propose that WtPKS1 catalyses the first step in diarylheptanoid biosynthesis and that the observed pyrones are derailment products in the absence of downstream processing proteins.  相似文献   

9.
Yanyan Li  Rolf Müller 《Phytochemistry》2009,70(15-16):1850-1857
Myxobacteria are prolific producers of a wide variety of secondary metabolites. The vast majority of these compounds are complex polyketides which are biosynthesised by multimodular polyketide synthases (PKSs). In contrast, few myxobacterial metabolites isolated to date are derived from non-modular PKSs, in particular type III PKSs. This review reports our progress on the characterisation of type III PKSs in myxobacteria. We also summarize current knowledge on bacterial type III PKSs, with a special focus on the evolutionary relationship between plant and bacterial enzymes. The biosynthesis of a quinoline alkaloid in Stigmatella aurantiaca by a non-modular PKS is also discussed.  相似文献   

10.
Tang Y  Lee TS  Kobayashi S  Khosla C 《Biochemistry》2003,42(21):6588-6595
Many bacterial aromatic polyketides are synthesized by type II polyketide synthases (PKSs) which minimally consist of a ketosynthase-chain length factor (KS-CLF) heterodimer, an acyl carrier protein (ACP), and a malonyl-CoA:ACP transacylase (MAT). This minimal PKS initiates polyketide biosynthesis by decarboxylation of malonyl-ACP, which is catalyzed by the KS-CLF complex and leads to incorporation of an acetate starter unit. In non-acetate-primed PKSs, such as the frenolicin (fren) PKS and the R1128 PKS, decarboxylative priming is suppressed in favor of chain initiation with alternative acyl groups. Elucidation of these unusual priming pathways could lead to the engineered biosynthesis of polyketides containing novel starter units. Unique to some non-acetate-primed PKSs is a second catalytic module comprised of a dedicated homodimeric KS, an additional ACP, and a MAT. This initiation module is responsible for starter-unit selection and catalysis of the first chain elongation step. To elucidate the protein-protein recognition features of this dissociated multimodular PKS system, we expressed and purified two priming and two elongation KSs, a set of six ACPs from diverse sources, and a MAT. In the presence of the MAT, each ACP was labeled with malonyl-CoA rapidly. In the presence of a KS-CLF and MAT, all ACPs from minimal PKSs supported polyketide synthesis at comparable rates (k(cat) between 0.17 and 0.37 min(-1)), whereas PKS activity was attenuated by at least 50-fold in the presence of an ACP from an initiation module. In contrast, the opposite specificity pattern was observed with priming KSs: while ACPs from initiation modules were good substrates, ACPs from minimal PKSs were significantly poorer substrates. Our results show that KS-CLF and KSIII recognize orthogonal sets of ACPs, and the additional ACP is indispensable for the incorporation of non-acetate primer units. Sequence alignments of the two classes of ACPs identified a tyrosine residue that is unique to priming ACPs. Site-directed mutagenesis of this amino acid in the initiation and elongation module ACPs of the R1128 PKS confirmed the importance of this residue in modulating interactions between KSs and ACPs. Our study provides new biochemical insights into unusual chain initiation mechanisms of bacterial aromatic PKSs.  相似文献   

11.
PKS11 is one of three type III polyketide synthases (PKSs) identified in Mycobacterium tuberculosis. Although many PKSs in M. tuberculosis have been implicated in producing complex cell wall glycolipids, the biological function of PKS11 is unknown. PKS11 has previously been proposed to synthesize alkylpyrones from fatty acid substrates. We solved the crystal structure of M. tuberculosis PKS11 and found the overall fold to be similar to other type III PKSs. PKS11 has a deep hydrophobic tunnel proximal to the active site Cys-138 to accommodate substrates. We observed electron density in this tunnel from a co-purified molecule that was identified by mass spectrometry to be palmitate. Co-crystallization with malonyl-CoA (MCoA) or methylmalonyl-CoA (MMCoA) led to partial turnover of the substrate, resulting in trapped intermediates. Reconstitution of the reaction in solution confirmed that both co-factors are required for optimal activity, and kinetic analysis shows that MMCoA is incorporated first, then MCoA, followed by lactonization to produce methyl-branched alkylpyrones.  相似文献   

12.
13.
Muggia L  Lucia M  Grube M  Martin G 《Fungal biology》2010,114(4):379-385
Lichenized and non-lichenized fungi produce a wide range of secondary metabolites. So far, type I polyketide synthases (PKSs) are the suggested catalysts for the biosynthesis of lichen compounds. We were interested whether lichen mycobionts also contain type III PKSs, representing a class that was only recently discovered in fungi. With an alignment of known type III CHS-like genes we applied the CODEHOP strategy to design degenerate PCR primers. We further screened available fungal genomes for type III PKS genes and aligned these sequences for a phylogenetic analysis. Type III-like genes from lichen mycobionts are closely related to those known from non-lichenized fungi, but not to those of bacteria and/or plants. We conclude that type III PKS genes are ubiquitous in fungi. They are present in diverse unrelated lichen mycobionts, but their function in lichens is so far unclear.  相似文献   

14.
Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C6–C14) to produce tri- and tetraketide pyrones. Mutations at H331 and N364 caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His227 and Leu366 play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.  相似文献   

15.
16.
Bacterial type I polyketide synthases (PKSs) are complex, multifunctional enzymes that synthesize structurally diverse and medicinally important natural products. Given their modular organization, the manipulation of type I PKSs holds tremendous promise for the generation of novel compounds that are not easily accessible by standard synthetic chemical approaches. In theory, hybrid polyketide synthetic pathways can be constructed through the rational recombination of catalytic domains or modules from a variety of PKS systems; however, the general success of this strategy has been elusive, largely due to a poor understanding of the interactions between catalytic domains, as well as PKS modules. Over the past several years, a fundamental knowledge of these issues, and others, has begun to emerge, offering refined strategies for the facile engineering of hybrid polyketide pathways.  相似文献   

17.
Type III polyketide synthases (PKSs) are responsible for aromatic polyketide synthesis in plants and bacteria. Genome analysis of filamentous fungi has predicted the presence of fungal type III PKSs, although none have thus far been functionally characterized. In the genome of Neurospora crassa, a single open reading frame, NCU04801.1, annotated as a type III PKS was found. In this report, we demonstrate that NCU04801.1 is a novel type III PKS catalyzing the synthesis of pentaketide alkylresorcylic acids. NCU04801.1, hence named 2'-oxoalkylresorcylic acid synthase (ORAS), preferred stearoyl-CoA as a starter substrate and condensed four molecules of malonyl-CoA to give a pentaketide intermediate. For ORAS to yield pentaketide alkylresorcylic acids, aldol condensation and aromatization of the intermediate, which is still attached to the enzyme, are presumably followed by hydrolysis for release of the product as a resorcylic acid. ORAS is the first type III PKS that synthesizes pentaketide resorcylic acids.  相似文献   

18.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide chalcone. A homology model suggested that BAS has the same overall fold as CHS with cavity volume almost as large as that of CHS. One of the most characteristic features is that Rheum palmatum BAS lacks active site Phe-215; the residues 214LF conserved in type III PKSs are uniquely replaced by IL. Our observation that the BAS I214L/L215F mutant exhibited chalcone-forming activity in a pH-dependent manner supported a hypothesis that the absence of Phe-215 in BAS accounts for the interruption of the polyketide chain elongation at the diketide stage. On the other hand, Phe-215 mutants of Scutellaria baicalensis CHS (L214I/F215L, F215W, F215Y, F215S, F215A, F215H, and F215C) afforded increased levels of truncated products; however, none of them generated benzalacetone. These results confirmed the critical role of Phe-215 in the polyketide formation reactions and provided structural basis for understanding the structure-function relationship of the plant type III PKSs.  相似文献   

19.
Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors.  相似文献   

20.
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.Type III polyketide synthases (PKSs), represented by a plant chalcone synthase (CHS), are the condensing enzymes that catalyze the synthesis of aromatic polyketides in plants, fungi, and bacteria (2). CHS catalyzes the decarboxylative condensation of p-coumaroyl-coenzyme A (p-coumaroyl-CoA), called a starter substrate, with three malonyl-CoAs, called extender substrates, and synthesizing a tetraketide intermediate. The synthesized tetraketide intermediate was cyclized and aromatized by CHS and resulted in naringenin chalcone. Like CHS, most of the type III PKSs catalyze the condensation of a starter substrate with several molecules of an extender substrate and cyclization. There are many type III PKSs that differ in these specificities.Until recently, type III PKSs were discovered only from plants. In 1999, the first bacterial type III PKS, RppA, was discovered. RppA catalyzes the condensation of five malonyl-CoAs to synthesize 1,3,6,8-tetrahydroxynaphthalene, which is a precursor of hexahydroxyperylenequinone melanin in the actinomycete Streptomyces griseus (4). Since then, the genome projects of various bacteria have revealed that type III PKSs are widely distributed in a variety of bacteria. For example, ArsB and ArsC, both of which are type III PKSs in Azotobacter vinelandii, catalyze the synthesis of alkylresorcinols and alkylpyrones, respectively, which are essential for encystment as the major lipids in the cyst membrane (5). In S. griseus, the srs operon consisting of srsA, srsB, and srsC is responsible for the synthesis of methylated phenolic lipids derived from alkylresorcinols and alkylpyrones (6). The function of each of the operon members is that SrsA is a type III PKS responsible for the synthesis of phenolic lipids alkylresorcinol and alkylpyrones, SrsB is a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC is a hydroxylase acting on the alkylresorcinol methyl ethers. The phenolic lipids synthesized by the Srs enzymes confer resistance to β-lactam antibiotics (6). Therefore, it is suggested that phenolic lipids play an important role as minor components in the biological membrane in various bacteria. In fact, srsAB- and srsABC-like operons are distributed widely in both gram-positive and -negative bacteria (see Fig. S1 in the supplemental material). However, most of these type III PKSs have not been characterized.Bacillus subtilis is one of the best-characterized gram-positive bacteria. BcsA, which stands for bacterial chalcone synthase, was annotated as a homologue of type III PKS in B. subtilis (3). As described in this paper, however, this annotation needs correction. We renamed the gene bpsA (for Bacillus pyrone synthase). Moreover, the functional unknown gene ypbQ is located next to bpsA. YpbQ, consisting of 168 amino acid residues, contained an isoprenylcysteine carboxyl methyltransferase (ICMT) domain of the ICMT family members, which are unique membrane proteins that are involved in the posttranslational modification of oncogenic proteins (23). Therefore, the bpsA and ypbQ genes were predicted to form an operon, just like srsA and srsB in the srs operon in S. griseus. We therefore named ypbQ, a thus-far functionally unknown gene, bpsB.In this study, we characterized the functions of BpsA and BpsB by in vivo and in vitro experiments. The in vivo experiments revealed that the overexpression of bpsA in B. subtilis led to the production of triketide pyrones, and the co-overexpression of bpsA and bpsB led to the production of triketide pyrone methyl ethers. The in vitro analysis showed that BpsA produced triketide pyrones and a small amount of tetraketide pyrones and tetraketide resorcinols from long-chain fatty acyl CoA thioesters as starter substrates and malonyl-CoA as an extender substrate. Therefore, BpsA is a type III PKS that is responsible for the synthesis of alkylpyrones, and BpsB is a methyltransferase that acts on the alkylpyrones to yield alkylpyrone methyl ethers. BpsB is the first enzyme found to methylate alkylpyrones. Furthermore, we attempted to analyze the biological function of the aliphatic polyketides by disrupting the bpsA and bpsB genes, but no distinct phenotypic changes were detected under laboratory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号