首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(γ-glutamic acid) (PGA) hydrolase was purified from the culture filtrate of a filamentous fungus, Myrothecium sp. TM-4222 and its general properties, especially the mode of hydrolytic action on the γ-glutamyl bond of PGA, were investigated. The purified preparation demonstrated a homogeneous band on an acidic slab gel of pH 4.3 with polyacrylamide gel electrophoresis. The enzyme showed its maximum activity at 37°C and at pH 5.0, being stable up to 40°C. The molecular mass was estimated to be 68 kDa by gel filtration. The hydrolytic action of the enzyme was specific for PGA, but not for other γ-glutamyl peptides or amides. The enzyme converted 38% of the original PGA with an average molecular mass of 500 kDa to smaller peptides, and then depolymerized these fragments to a mixture of γ-oligopeptides which consisted of only L-glutamic acid. L-Glutamic acid monomer was negligible in the reaction mixture. The remaining 62% of PGA was resistant to the enzyme action, in which D-glutamic acid was mainly detected. This study demonstrated a novel endo-type specificity of hydrolysis on PGA by the enzyme.  相似文献   

2.
Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on l-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid l-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.  相似文献   

3.
Polygammaglutamyl metabolites of methotrexate   总被引:8,自引:0,他引:8  
Heretofore unrecognized metabolites of methotrexate (MTX) have been detected in human red blood cells and isolated from rat liver and viscera. The metabolites from the rat were identified as 2,4-diamino-N10-methylpteroylglutamyl-γ-glutamic acid [MTX(G1)] and 2,4-diamino-N10-methylpteroylglutamyl-γ-glutamyl-γ-glutamic acid [MTX(G2)] by comparison with authentic synthetic compounds.  相似文献   

4.
Poly(γ-glutamic acid) (PGA) production in Bacillus subtilis IF03335 was studied. When citric acid as a carbon source was added to a glutamic acid medium containing L-glutamic acid and ammonium sulfate, a large amount of pure PGA was produced. On the other hand, when glucose was added to the glutamic acid medium, a by-product was produced, which seemed to be a polysaccharide. Moreover, the mode of hydrolysis was investigated with PGA in aqueous solutions at 80, 100, and 120°C by monitoring the time-dependent changes in the molecular weights. Hydrolytic degradation of PGA was found to proceed through a random chain scission.  相似文献   

5.
The addition of penicillin to cells of Corynebacterium alkanolyticum No. 314 growing on n-paraffins medium caused the simultaneous excretion of phospholipids, UDP-N-acetylhexosamine derivatives and L-glutamic acid.

Among many antibiotics which inhibit cell wall synthesis, only the inhibitors of peptideglycan transpeptidase such as penicillin G and cephaloridine were effective for inducing the excretion of phospholipids, UDP-N-acetylhexosamine derivatives and L-glutamic acid, while the others promoted only the excretion of UDP-N-acetylhexosamine derivatives.

From the close relationship between the excretion of L-glutamic acid and the excretion of phospholipids, it was suggested that the action of penicillins and cephalosporins on the cell membrane resulted in the excretion of L-glutamic acid.  相似文献   

6.
Bacillus subtilis subsp. natto produces poly-γ-glutamic acid under the control of quorum sensing. We identified ComXnatto pheromone as the quorum-sensing pheromone with an amino acid sequence of Lys-Trp-Pro-Pro-Ile-Glu and the tryptophan residue posttranslationally modified by a farnesyl group. ComXnatto pheromone is unique in the sense that the 5th tryptophan residue from the C-terminal is farnesylated.  相似文献   

7.
(+)-Marmelo Lactones A(VA) and B (VB) were synthesized from erythro-γ-methyl-l-glutamic acid (IA) and threo acid (IB), respectively. The absolute configurations of natural marmelo lactones were thus determined to be (2R, 4S) for (+)-marmelo lactone A and (2R, 4R) for ( – )-marmelo lactone B.  相似文献   

8.
At maximum production of l-glutamic acid, the oxidation-reduction potential of the culture broth in l-glutamic acid fermentation showed a stable value of 9.0 to 9.6 as rH value. When biotin concentration in the medium was high (40γ/liter), the production of l-glutamic acid decreased, and the rH was 8.0 and it was out of accordance with that of the control (biotin-poor; 2γ/liter). Under “less-aerobic” conditions, its rH rose to 10.4.

From these results, it was concluded that the rH during maximum production of l-glutamic acid showed a stable value affected actively by the redox system, l-glutamic acid/α-ketoglutaric acid and   相似文献   

9.
A screening was designed to isolate microorganisms having poly(γ-glutamic acid) (PGA) endohydrolase activity. Of the strains screened, TM-4222, from a soil sample, showed the highest viscosity decrement ability on PGA. It was identified to be a Myrothecium sp. The fungal production of the enzyme was slightly promoted with yeast extract and greatly promoted with· both yeast extract and PGA. The fungus was evaluated to produce PGA hydrolase of an endo-type specificity by analyzing of the reaction products.  相似文献   

10.
γ-Aminobutyric acid (GABA), a hypotensive compound, and alanine accumulated in tea leaves under anaerobic conditions. Since the 15N in 15N-glutamic acid was well incorporated in GABA and alanine during anaerobic incubation, glutamic acid seemed to be a source of nitrogen for the increased GABA and alanine. GOT and GPT were the predominant amino acid transaminases in tea leaves. Although glutamate decarboxylase and GPT seemed to be important for GABA and alanine accumulation, the activities of these enzymes did not increase under anaerobic conditions. Glutamate decarboxylase, which formed GABA from glutamate, was purified 52.4-fold. This enzyme, with an optimum pH at 5.8, was activated by pyridoxal phosphate and used only l-glutamic acid as a substrate.  相似文献   

11.
γ-(l)-Menthyl L - and D -glutamates were prepared by a fusion reaction of N-phthalyl-L - and D -glutamic anhydrides with l-menthol, followed by hydrazinolysis. The monomers were polymerized to poly[γ-(l)-menthyl L - and D -glutamates] by the N-carboxyanhydride method. These polymers were soluble in many organic solvents, such as ethyl ether, chloroform, tetrahydrofuran, and n-hexane. From the results obtained by a study of the infrared absorption spectra, the x-ray photographs, the optical rotatory dispersions and the circular dichroisms, poly[γ-(l)-menthyl L -glutamate] was found to be a right-handed α-helix in the solid state and in solution. Similarly, poly[γ-(l)-menthyl D -glutamate] was a left-handed α-helix. The helix-coil transition of these polymers was observed in the vicinity of 40% dichloroacetic acid in a chloroform–dichloroacetic acid mixture.  相似文献   

12.
Relation between fatty acid composition of cellular phospholipids and the excretion of L-glutamic acid was investigated using Corynebacterium alkanolyticum GL–21 (a glycerol auxotroph).

When grown on n-hexadecane, the proportion of unsaturated fatty acids was higher in L-glutamic acid-accumulating cells than in L-glutamic acid-nonaccumulating cells. When grown on fructose or acetic acid, the reverse relation was observed. Moreover, cells containing no oleic acid produced L-glutamic acid from n-pentadecane.

These results suggest that the membrane permeability to L-glutamic acid is not always controlled by the cellular content of unsaturated fatty acids.  相似文献   

13.
From the nonprotein acidic amino acid fraction of Phaseolus angularis W. F. Wight, Azuki bean of commerce in Japan, a new γ-glutamyl peptide has been isolated by ion exchange techniques. This compound has been shown to be γ-l-glutamyl-l-β-phenyl-β-alanine. The characterization is based on elementary analysis, hydrolysis with hydrochloric acid or Amber lite CG-120 resin in H+ form, ultraviolet and infrared spectra, and the reaction of fluorodinitrobenzene with the peptide. The glutamic acid separated from the hydroiysates was decarboxylated to γ-aminobutyric acid with l-glutamic acid decarboxylase prepared from squash. β-Phenyl-β-alanine component in the peptide had the same infrared spectrum, elementary analysis, melting point, optical rotation and behavior in paper chromatography as authentic l-β-phenyl-β-alanine.  相似文献   

14.
The production of L -glutamic acid from hydrocarbons by a newly isolated bacterium, which was identified as Corynebacterium, was investigated. The outstanding characteristic of this bacterium was found to be an accessory requirement of thiamine for growth. The optimum concentration of thiamine for growth was 50 μg./liter, while that for L -glutamic acid production was 3–5 μg./liter. n-Paraffins ranging from dodecane to heptadecane were best for L -glutamic acid production, and about 5 g. of L -glutamic acid were obtained from 30 g. of these individual n-paraffins. On the other hand, a tracer experiment using oxygen-18 revealed that molecular oxygen was incorporated into L -glutamic acid produced from dodecane. Based on the incorporation value of molecular oxygen in L -glutamic acid, a hypothetical pathway for the biosynthesis of L -glutamic acid from dodecane was discussed.  相似文献   

15.
Kainic acid is a linear competitive inhibitor (Kis 250 μm ) of the ‘high affinity’ uptake of l -glutamic acid into rat brain slices. Kainic acid inhibits the ‘high affinity’ uptake of l -glutamic, d -aspartic and l -aspartic acids to a similar extent. Kainic acid is not actively taken up into rat brain slices and is thus not a substrate for the ‘high affinity’ acidic amino acid transport system or any other transport system in rat brain slices. Kainic acid (300 μm ) does not influence the steady-state release or potassium-stimulated release of preloaded d -aspartic acid from rat brain slices. Kainic acid binds to rat brain membranes in the absence of sodium ions in a manner indicating binding to a population of receptor sites for l -glutamic acid. Only quisqualic and l -glutamic acid inhibit kainic acid binding in a potent manner. The affinity of kainic acid for these receptor sites appears to be some 4 orders of magnitude higher than for the ‘high affinity’l -glutamic acid transport carrier. Dihydrokainic acid is approximately twice as potent as kainic acid as an inhibitor of ‘high affinity’l -glutamic acid uptake but is some 500 times less potent as an inhibitor of kainic acid binding and at least 1000 times less potent as a convulsant of immature rats on intraperitoneal injection. Dihydrokainic acid might be useful as a ‘control uptake inhibitor’ for the effects of kainic acid on ‘high affinity’l -glutamic acid uptake since it appears to have little action on excitatory receptors. N-Methyl-d -aspartic acid is a potent convulsant of immature rats, but does not inhibit kainic acid binding or ‘high affinity’l -glutamic acid uptake. N-Methyl-d -aspartic acid might be useful as a ‘control excitant’ that activates different excitatory receptors to kainic acid and does not influence ‘high affinity’l -glutamic acid uptake.  相似文献   

16.
The mucin obtained from a natto sample was found to be composed of 58 % of γ-polyglutamic acid and 40% of polysaccharide. The ratio of l- and d-glutamic acid was determined to be 58:42 using l-glutamic acid decarboxylase. The weight- and z-average molecular weight were 2.08 × 105 and 2.22 × 105, respectively. The distribution curve of the sedimentation coefficient showed a small heterogeneity. The mucin molecule was considered to be randomly coiled at pH 5.0 ~ 8.8 and to be a rod-like molecule in the lower pH region.  相似文献   

17.
Some strains of Pseudomonas was found capable of utilizing l-theanine or d-theanine as a sole nitrogen and carbon source. The cell-free extract catalyzes the hydrolysis of the amide group of the compounds and the hydrolase activity was influenced remarkably by the nitrogen source in the medium. l-Theanine and d-theanine were hydrolyzed to yield stoichiometrically l-glutamic acid and d-glutamic acid, respectively, and ethylamine, which were isolated from the reaction mixture and identified.

The theanine hydrolase of Pseudomonas aeruginosa was purified approximately 200-fold. It was shown that the activities of l-theanine hydrolase, d-theanine hydrolase and the heat-stable l-glutamine hydrolase and d-glutamine hydrolase are ascribed to a single enzyme, which may be regarded as a γ-glutamyltransferase from the point of view of the substrate specificity and the properties. This theanine hydrolase catalyzed the transfer of γ-glutamyl moiety of the substrates and glutathione to hydroxylamine. l-Glutamine and d-glutamine were hydrolyzed by the theanine hydrolase and also by the heat-labile enzyme of the same strain of Pseudomonas aeruginosa, whose properties resembled the common glutaminase.  相似文献   

18.
Two isozymes of γ-glutamyltranspeptidase, GGT-A and GGT-B, were purified to electrophoretic homogeneity from a culture broth of Bacillus subtilis TAM-4, which produces poly(γ-glutamic acid) (PGA) de novo. GGT-A was composed of three subunits with molecular weights of 23,000 (I), 39,000 (II), and 40,000 (III). GGT-B was composed of two subunits with molecular weights of 22,000 (I) and 39,000 (II). The N-terminal amino acid sequences of GGT-A subunit I and GGT-B subunit I were very similar. GGT-A subunit II and GGT-B subunit II had an identical N-terminal amino acid sequence. That of GGT-A subunit III showed no similarity to the other subunits. Both GGTs had similar enzymatic properties (optimum pH and temperature: pH 8.8 and 55°C) but showed a significantly different thermal stability at 55°C. Both GGT-A and -B used d-γ-glutamyl-p-nitroanilide as well as the l-isomer as the γ-glutamyl donor and used various amino acids and peptides as the acceptor. It was also found that the PGA produced by the strain was hydrolyzed to glutamic acid by its own GGTs.  相似文献   

19.
The amino-acid-sequence distribution in poly(γ-benzyl-L -glutamate, L -methionine) prepared by polymerization of the respective N-carboxyanhydrides has been investigated. This copolymer was converted first to poly(L -glutamic acid, L -methionine), which was subsequently cleaved by treatment with cyanogen bromide. The resulting material was fractionated into oligomers of (glutamic acid)n-homoserine whose relative molar amounts were determined quantitatively. The results have been compared with those for a random incorporation of the methionine in a γ-benzylglutamate host polymer. Fairly close agreement has been found.  相似文献   

20.
Bacillus licheniformis WBL-3, one of poly-γ-glutamic acid (γ-PGA) producers, depends on the existence of glutamate in the medium. In this paper, γ-PGA synthetase complex gene (pgsBCA) was cloned from Bacillus licheniformis WBL-3. pgsBCA gene of B. licheniformis WBL-3 was highly homologous with pgs-BCA gene of B. licheniformis 14580. The similarity was 97%, but the similarity of pgsBCA gene between B. licheniformis WBL-3 and Bacillus subtilis IFO3336 was only 74%. However, when pgsBCA was expressed in Escherichia coli, the E. coli clone produced γ-PGA extracellularly. The yield of γ-PGA was 8.624 g/l. This result infers that B. licheniformis and B. subtilis has the similar γ-PGA biosynthesis mechanism, namely, glutamic acid is catalyzed by an ATP-dependent amide ligase to synthesize γ-PGA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号