首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Replication and incompatibility properties in Escherichia coli of DNA segments from the replication origin region of plasmid RK2 have been investigated. A 393 bp HpaII fragment, derived from the region of the RK2 origin of replication, carries an active origin when essential RK2 encoded functions are provided in trans and will form a mini RK2 replicon when linked to a non-replicating selective fragment. This small ori RK2 plasmid cannot stably coexist with other functional RK2 replicons and is thus incompatible with RK2 replicons. However, the 393 bp ori RK2 segment when cloned into a high copy number plasmid, where plasmid maintenance is no longer dependent on ori RK2, does not interfere with maintenance of a resident RK2 replicon. This is in contrast to larger segments from the origin region that, when cloned at high copy number, cause the loss of a resident RK2 replicon. The apparent ability of the small HpaII oriRK2 plasmid to displace resident RK2 replicons may indicate the turning on of one incompatibility mechanism only when replication from ori RK2is required or may simply reflect the strong selective pressure for establishment of the incoming ori RK2 plasmid and poor ability of the HpaII ori RK2 plasmid to replicate in the presence of another RK2 replicon. The incompatibility expressed by the functional HpaII ori RK2 may be designated inc 1. The activity of a segment of RK2, cloned at high copy number, to eliminate a resident RK2 plasmid has been localized to a region of RK2 DNA, designated the inc 2 region, to distinguish it from inc 1, above, that overlaps but does not coincide with the 393 bp HpaII ori RK2. This inc 2 region also appears to be involved in segregation of RK2 derivatives since removal of a portion of this region results in both higher copy number and increased instability of the RK2 derivative. In addition to defining the region of the RK2 origin of replication, these results indicate that the ability to eliminate a resident RK2 replicon can be expressed by fragments, cloned at high copy number, that do not contain the complete ori RK2. Also, only part of the inc 2 region that appears to be responsible for efficient elimination of RK2 replicons by fragments cloned at high copy number is required for ori RK2.  相似文献   

2.
There is general agreement that DNA synthesis in the single-copy and amplified dihydrofolate reductase (DHFR) loci of CHO cells initiates somewhere within the 55-kb spacer region between the DHFR and 2BE2121 genes. However, results of lagging-strand, early-labelling fragment hybridization (ELFH), and PCR-based nascent-strand abundance assays have been interpreted to suggest a very narrow zone of initiation centered at a single locus known as ori-β, while two-dimensional (2-D) gel analyses suggest that initiation can occur at any of a large number of potential sites scattered throughout the intergenic region. The results of a leading-strand assay and two intrinsic labelling techniques are compatible with a broad initiation zone in which ori-β and a second locus (ori-γ) are somewhat preferred. To determine how these differing views are shaped by differences in experimental manipulations unrelated to the biology itself, we have applied the lagging-strand, ELFH, neutral-neutral, and/or neutral-alkaline 2-D gel assays to CHOC 400 cell populations synchronized and manipulated in the same way. In our experiments, the lagging-strand assay failed to identify a template strand switch at ori-β; rather, we observed a gradual, undulating change in hybridization bias throughout the intergenic spacer, with hybridization to the two templates being approximately equal near a centered matrix attachment region. In the ELFH assay, all of the fragments in the 55-kb intergenic region were labelled in the first few minutes of the S phase, with the regions encompassing ori-β and ori-γ being somewhat preferred. Under the same conditions, neutral-neutral and neutral-alkaline 2-D gel analyses detected initiation sites at multiple locations in the intergenic spacer. Thus, the results of all existing replicon-mapping methods that have been applied to the amplified DHFR locus in CHOC 400 cells are consistent with a model in which two somewhat preferred subzones reside in a larger zone of multiple potential initiation sites in the intergenic region.  相似文献   

3.
Summary We have taken advantage of two situations in which the incompatibility barrier between F plasmids is overcome to show that wild-type genes controlling F copy number (cop +) are dominant in trans over mutant genes. The simplest interpretation of our findings is that the cop mutations have inactivated a repressor gene that controls F replication. Since the cop. mutations all map in a region that others have shown by sequence analysis to theoretically encode four proteins, a strong possibility exists that one of these proteins is the repressor.  相似文献   

4.
B C Kline 《Plasmid》1979,2(3):437-445
The specificity of F incompatibility genes (inc+) has been studied with the Flac and R386 plasmids, members of the IncFI incompatibility group. Recently, two inc+ regions, incA (46.4–49.3F) and incB (43.1–46.4F) were identified by cloning these F sequences onto pSC101 and subsequently demonstrating incompatibility of the recombinants with Flac. It is shown here that the FincA+ recombinant is incompatible with both Flac and R386 while the FincB+ recombinant is incompatible only with Flac. Also, a plasmid mutant is described that has reduced incompatibility against Flac and R386. The mutation is located on the BamHI restriction fragment that contains the FincA region. These genetic findings are consistent with the deduction of Palchaudhuri and Maas, based on heteroduplex analysis of IncFI plasmids, that placed the IncFI determinant in the 46.4–48.6F region. The findings also indicate that the FincB+ gene product, which has been implicated in negative control of F copy number, is specific for the F replicon.  相似文献   

5.
For small-copy-number pUC-type plasmids, the inc1 and inc2 mutations, which deregulate replication, were previously found to increase the plasmid copy number 6- to 7-fold. Because plasmids can exert a growth burden, it was not clear if further amplification of copy number would occur due to inc mutations when the starting point for plasmid copy number was orders of magnitude higher. To investigate further the effects of the inc mutations and the possible limits of plasmid synthesis, the parent plasmid pNTC8485 was used as a starting point. It lacks an antibiotic resistance gene and has a copy number of ∼1,200 per chromosome. During early stationary-phase growth in LB broth at 37°C, inc2 mutants of pNTC8485 exhibited a copy number of ∼7,000 per chromosome. In minimal medium at late log growth, the copy number was found to be significantly increased, to approximately 15,000. In an attempt to further increase the plasmid titer (plasmid mass/culture volume), enzymatic hydrolysis of the selection agent, sucrose, at late log growth extended growth and tripled the total plasmid amount such that an approximately 80-fold gain in total plasmid was obtained compared to the value for typical pUC-type vectors. Finally, when grown in minimal medium, no detectable impact on the exponential growth rate or the fidelity of genomic or plasmid DNA replication was found in cells with deregulated plasmid replication. The use of inc mutations and the sucrose degradation method presents a simplified way for attaining high titers of plasmid DNA for various applications.  相似文献   

6.
Physical and genetic analyses of the Inc-I alpha plasmid R64   总被引:8,自引:6,他引:2       下载免费PDF全文
A 126-kilobase (kb) physical and genetic map of the Inc-I alpha plasmid R64 was constructed by using the restriction enzymes, BamHI, SalI, XhoI, HindIII, and EcoRI. The replication (Rep) and incompatability (Inc) functions of this plasmid were located in a 1.75-kb segment of an EcoRI fragment, E10 (3.3 kb). In addition, the genes determining growth inhibition of phage BF23 (Ibf), suppression of dnaG ( Sog ), resistance to tetracycline (Tetr), and resistance to streptomycin ( Strr ) were located on the 5.5-kb HindIII-XhoI fragment, the 8.1-kb EcoRI fragment (E5), the 4.6-kb HindIII fragment (H8), and the 4.1-kb HindIII fragment (H10), respectively. The map of R64 was compared with that of ColIb, which belongs to the Inc-I alpha group.  相似文献   

7.
Theoriregion of anErwinia stewartiiplasmid, pSW1200 (106 kb), has been cloned and sequenced. This region consists of a gene encoding a protein which has 91% similarity and 73% identity with the RepA protein of bacteriophage P1. Theoriregion also consists of eight copies of 19-bp iterons which are highly homologous to the iterons of P1. Similar to plasmid P1, pSW1200 replicon has a copy number of approximately 1. On the other hand, the copy number increases about ninefold if three of the iterons located downstream fromrepAgene are deleted. We also demonstrate that pGEM-5Z consisting of a copy of P1 iteron is incompatible with a pSW1200 derivative, pSW1201, suggesting that pSW1200 and P1 DNA are incompatible and both belong to the IncY group.  相似文献   

8.
The mechanism of reduced sensitivity to the small isometric-headed bacteriophage sk1 encoded on a 19-kilobase (kb) HpaII fragment subcloned from pKR223 of Lactococcus lactis subsp. lactis KR2 was examined. The reduced sensitivity to phage sk1 was due to a modest restriction/modification (R/M) system that was not active against prolate-headed phage c2. The genetic loci for the R/M system against sk1 and the abortive phage infection (Abi) mechanism effective against phage c2 were then localized by restriction mapping, subcloning, and deletion analysis. The restriction gene was localized to a region of a 2.7-kb EcoRV fragment and included an EcoRI site within that fragment. The modification gene was found to be physically separable from the restriction gene and was present on a 1.75-kb BstEII-XbaI fragment. The genetic locus for the Abi phenotype against phage c2 was localized to a region containing a 1.3-kb EcoRI fragment. Attempts to clone the c2 Abi mechanism independent of the sk1 R/M system were unsuccessful, suggesting that expression of the abi genes required sequences upstream of the modification gene. Some pGBK17 (vector pGB301 plus a 19-kb HpaII insert fragment) transformants exhibited the R/M system against phage sk1 but lost the Abi mechanism against phage c2. These transformants contained a 1.2- to 1.3-kb insertion in the Abi region. The data identified genetic loci on a cloned 19-kb HpaII fragment responsible for restriction activity and for modification activity against a small isometric-headed phage and for Abi activity against prolate-headed phage c2. A putative insertion element was also found to inactivate the abi gene(s).  相似文献   

9.
Summary We previously reported the existence of a series of chemically induced trans recessive copy-number mutations (cop) for mini-F plasmids and the existence of a similar series of cop mutations induced by insertion of the ampicillin resistance transposon Tn3. In this paper we describe the experiments showing that these two series of mutations are in different genes. Briefly, the experiments show that the one mutant series can complement the other, that the mutations map in distinct but adjacent regions, that the copy numbers of double mutants are the products of the copy numbers determined by the single mutations, and that Tn3 does not elevate copy number by a polar effect on the adjacent cop gene defined by chemical mutagenesis. We term the latter gene copA and the gene mutated by Tn3, copB. We also demonstrate here that copB mutations are recessive to the wild type allele. Further, we have characterized copB by deletion and recombinational analysis as the series of five 19- to 22-base-pair directly repeated sequences that had previously been designated incC-that is, one of the incompatibility genes. The evidence for this conclusion is that plasmids lacking two, three or five direct repeats have their copy number elevated proportionately. Possible mechanisms for copB control of replication are discussed.  相似文献   

10.
11.
The SNRPN gene is known to be expressed exclusively from the paternal allele and to map to the critical region for the neurobehavioral disorder, Prader-Willi syndrome (PWS). As a means to investigate the mechanism of imprinting for the SNRPN gene, we have sought to recapitulate the imprinted expression of the endogenous gene. Using an 85-kb murine Snrpn clone, containing 33 kb of 5′ and 30 kb of 3′ flanking DNA, we obtained two intact transgenic lines. One line, containing two copies of the Snrpn transgene, recapitulated the imprinted expression pattern of the endogenous locus, whereas the other transgenic line, containing a single copy, was expressed upon both maternal and paternal inheritance. This suggests that a 6.6-kb region of maternal-specific DNA methylation that we have identified may be sufficient to confer imprinted expression, but not in a copy-number independent manner. Finally, we produced five lines of transgenic mice using a 76-kb human SNRPN clone containing 45 kb and 7 kb of 5′ and 3′ flanking DNA, respectively. We found all the lines were expressed upon both maternal and paternal inheritance, regardless of copy number, suggesting that the imprinting machinery in mouse and human may have diverged. Received: 11 November 1998 / Accepted: 29 January 1999  相似文献   

12.
《Gene》1998,207(2):119-126
A novel transformation technique, resident plasmid integration, for the cloning of foreign DNA in oral streptococci was described recently (T. Shiroza and H. K. Kuramitsu, Plasmid, 1995, 34, 85–95). This technique is based on the integration of linearized foreign genes by recombination-proficient bacteria onto a resident plasmid, if an appropriate selection marker is flanked by the same anchor sites present in the resident plasmid. Since the transforming vehicles for this system included a pUC-derived replication origin, the high level expression in Escherichia coli cells hindered the cloning of certain genes. In the present study, new plasmids were constructed, two resident plasmids, four integration plasmids, and four cloning plasmids, all of which possess the medium-copy number replication origin, p15A ori, isolated from pACYC177. The resident plasmids consisted of the following three components: the p15A ori (0.65-kb BglII fragment), the pVA380-1 basic replicon functional in mutans streptococci (2.5-kb BamHI fragment), and either an erythromycin resistance or a spectinomycin resistance gene (0.9- or 1.1-kb BamHI fragment, respectively). Most of the basic replicon of pVA380-1, except for the 3′-portion of the 0.2-kb region, in the resident plasmid was replaced with a kanamycin resistance gene to construct the four integration plasmids. Therefore, the upstream and downstream anchor sites for the double cross-over event in this new system were 0.65-kb p15A ori and the 0.2-kb portion of the 3′-end of pVA380-1 replicon, respectively. This system was used to clone the gene coding for cycloisomaltooligosaccharide glucanotransferase which produces cycloisomaltooligosaccharide, a potent inhibitor of oral streptococcal glucosyltransferase, isolated from Bacillus circulans chromosome, into Streptococcus gordonii, and its gene product was successfully secreted into the culture media. Plasmids described here should be useful tools for introducing heterologous DNA into resident plasmids following integration in oral streptococci.  相似文献   

13.
Mating-type switching in the yeast Saccharomyces cerevisiae involves the transposition of a copy of a or α information from unexpressed “library” genes, HML or HMR, to replace the sequence at the mating type locus, MAT. In normal homothallic strains, where conversions of MAT may occur as often as every cell division, the switching of MAT alleles does not alter the alleles at HML or HMR. We have discovered that several mutations within or adjacent to MAT that impair the excision of the MAT allele permit conversions of the alleles at HML or HMR in more than 1% of the cells analyzed. The two mutations within the MAT locus (MATa-inc and MATα-inc) can transpose to HML or HMR without being lost at MAT. Thus a MATα-inc HMLα HMRa HO strain can switch to MATα-inc HMLα HMRα-inc HO. Even though the α-inc and a-inc alleles prevent their own replacement at MAT, these sequences are efficiently transposed back from HMLα-inc or HMLa-inc to replace normal MAT alleles. When these alleles reappear at MAT, they are again blocked in excision. Thus the sequences used to remove an allele from MAT must differ from those used to replicate and transpose it. Two cis-acting stk mutations adjacent to MAT that block switching of MATa to MATα also induce the conversion of HMLα to HMLa. However, we have previously shown that these events do not occur in strains carrying a recessive “switch” mutant (swi1) or in strains carrying a defective allele of the HO gene. In stk1 MATa HO strains, HMLα was converted to HMLa in approximately 4% of the subclones examined. In contrast, the HMLα-inc sequence was not converted in similar stk1 MATa HO strains. Thus the excision of the α-inc sequence seems to be prevented at both MAT and HML. These results suggest that the illegal conversions of HML and HMR occur by a mechanism similar to that used for normal conversions of MAT.  相似文献   

14.
Ten Arabidopsis lines that carry recessive mutations in the cop1 (constitutively photomorphogenic) locus have been isolated. These lines define at least four different alleles. All of the mutant lines produce dark-grown seedlings that mimic wild-type seedlings grown in the light. The phenotype of the dark-grown mutant seedlings includes: short hypocotyls, open and enlarged cotyledons, accumulation of anthocyanin, cell-type differentiation and chloroplast-like plastid differentiation in cotyledons. Moreover, in more prolonged dark-growth periods the mutants exhibit true leaf development that parallels that in light-grown siblings. The four mutant alleles represent two types of mutations: three alleles (cop 1-1, cop 1-2, and cop 1-3) have severely affected phenotypes whereas one allele (cop 1-4) has a less severe phenotype. Compared to the severe alleles, the cop 1-4 mutant has slightly longer hypocotyls in dark-grown seedlings and does not accumulate abnormal levels of anthocyanin. The cop1–1/cop1-4 hybrid seedlings are intermediate in many physiological properties under both dark- and light-growth conditions, relative to the two parents. These results may suggest that the extent of residual cop1 gene activity in the mutants dictates the degree to which the aberrant plant phenotype is expressed. Analysis of plants carrying both cop1 and hy, a mutation that results in a deficiency of active phyto-chrome, suggests that the cop1 gene product acts downstream of phytochrome. The differentiation of chloroplasts in the roots of light-grown cop1 plants but not in wild-type plants suggests that the wild-type cop1 gene product also normally plays a role in suppressing chloroplast development in the roots of light-grown plants. To aid the eventual molecular cloning of the cop1 locus, its chromosomal location has been mapped and a molecular marker that is located about 1 centimorgan away from the cop1 locus obtained.  相似文献   

15.
16.
Unusual restriction fragments were detected by DNA blot hybridization with PCNA (DNA polymerase-delta auxiliary protein) probe in one of seven cases of congenital malformations. Chromosomal in situ hybridization localized PCNA gene to region q31-35 of human chromosome 2. To discover the locus more closely associated with congenital malformations, a cloned DNA segment which has been mapped to chromosomal region 2q33-36 was tested for restriction fragment length polymorphisms (RFLPs) in these patients. The 2q33-36 probe hybridized with 2.1-kb, 1.9-kb and 1.7-kb fragments in ten normal control samples. In seven cases of congenital malformations examined, however, the band of 2.1 kb is absent in six cases and the band of 1.7 kb in one case. These results indicate that the locus closely linked to congenital malformations is present in the proximity of PCNA locus.  相似文献   

17.
Summary We have isolated a deletion mutation and a point mutation in the copB gene of the replication region Repl of the IncFI plasmid Co1V2-K94. Subsequently, this copB gene with and without point mutation was cloned and sequenced, and the point mutation was mapped in the coding region of copB with a change of one amino acid from arginine to serine. Furthermore, this copB mutant had an approximately 10-fold increase in copy number. The CopB-phenotype of Co1V2-K94 could be complemented in trans by the copB gene of coresident IncFII plasmids such as R1 and R538, but not R100, suggesting that ColV2-K94 and R1 or R538 contain the same copB allele.  相似文献   

18.
Christopher M. Thomas   《Plasmid》1981,5(3):277-291
It has previously been concluded that regions tentatively designated trfA and trfB, located at 16–18.7 and 54–56 kb, respectively, on the genome of broad host range plasmid RK2 provide trans-acting functions involved in plasmid replication and maintenance in Escherichia coli (Thomas et al., 1980). A third region, the replication origin, oriRK2, located at 12 kb on the genome, is also required. A segment of DNA containing oriRK2 can be linked to a nonreplicating selective marker and can replicate as an autonomous plasmid so long as DNA of RK2 carrying the gene for one or more trans-acting replication functions is present in the same cell on an independent plasmid or integrated into the chromosome. It is demonstrated here that the trfA region alone can provide the trans-acting functions necessary for replication from oriRK2. Deletion of the trfB region in trans to an oriRK2 plasmid does not correlate with alteration in copy number or stability of the oriRK2 plasmid. Temperature-sensitive mutants defective in plasmid maintenance can apparently arise from mutations in both the trfA and trfB regions as indicated by complementation analysis of three different mutants. The trfA and trfB regions from two mutant plasmids have been cloned and used to allow a physically separate but functionally dependent oriRK2 plasmid to replicate at 30 °C. When the source of trfA and trfB is a trfB mutant the oriRK2 plasmid is temperature stable but is temperature sensitive when the source is a trfA mutant. This confirms that only trfA is essential for initiation at and elongation from oriRK2 which is probably the primary event in RK2 replication and suggests that the trfB region plays some other role in plasmid maintenance in plasmids carrying all three regions, oriRK2, trfA, and trfB.  相似文献   

19.
Marine cyanobacterium Synechococcus sp. strain. PCC 7002 has at least six endogenous plasmids. When it was cultured in 1 m NaCl medium, the copy numbers of the smallest (4.5 kb) and the second smallest (9.7 kb) plasmids decreased to one-third and one-tenth of those in control culture (0.3 m NaCl) respectively. In medium without NaCl, the copy numbers of those plasmids also decreased but the changes were much smaller. On the other hand, copy numbers of 15.4-kb, 30.0-kb, and 36.9-kb plasmids did not change among the three different NaCl concentrations (0 m, 0.3 m, 1 m). The copy number changes of the two plasmids were reversible. A similar copy number change was also observed in medium with 0.3 m NaCl+0.7 m KCl. These observations suggest that copy number controls are different among endogenous plasmids, and some of them are affected by salinity in the medium.  相似文献   

20.
A 12.2-kilobase (kb) BclI fragment containing the lysostaphin endopeptidase gene was cloned from Staphylococcus simulans biovar staphylolyticus into Escherichia coli. The gene was expressed in E. coli and the gene product apparently was secreted into the periplasmic space. The gene was localized to a 3.3-kb region of the cloned fragment and this region was shown to contain a staphylococcal promoter for the endopeptidase gene. By hybridization analysis, the endopeptidase gene was shown to reside on the largest of five plasmids in S. simulans biovar staphylolyticus. No additional copies of this gene were detected in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号