首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In adults, hyperosmolality stimulates central osmoreceptors, resulting in arginine vasopressin (AVP) secretion. Near-term fetal sheep have also developed mechanisms to respond to intravascular hypertonicity with stimulation of in utero AVP release. However, prior studies demonstrating fetal AVP secretion have utilized plasma tonicity changes greater than those required for adult osmotically induced AVP stimulation. We sought to examine near-term fetal plasma osmolality threshold and sensitivity for stimulation of AVP secretion and to correlate plasma hormone levels with central neuronal responsiveness. Chronically instrumented ovine fetuses (130 +/- 2 days) and maternal ewes simultaneously received either isotonic or hypertonic intravascular NaCl infusions. Maternal and fetal plasma AVP and angiotensin II (ANG II) levels were examined at progressively increasing levels of plasma hypertonicity. Intravenous hypertonic NaCl gradually elevated plasma osmolality and sodium levels. Both maternal and fetal plasma AVP increased during hypertonicity, whereas ANG II levels were not changed. Maternal AVP levels significantly increased with a 3% increase in plasma osmolality, whereas fetal plasma AVP significantly increased only at higher plasma osmolality levels (over 6%). Thus the slope of the regression of AVP vs. osmolality was greater for ewes than for fetuses (0.232 vs. 0.064), despite similar maternal and fetal plasma osmolality thresholds for AVP secretion (302 vs. 304 mosmol/kg). Hyperosmolality induced Fos immunoreactivity (FOS-ir) in the circumventricular organs of the fetal brain. FOS-ir was also demonstrated in the fetal supraoptic and paraventricular nuclei (SON and PVN), and double labeling demonstrated that AVP-containing neurons in the SON and PVN expressed Fos in response to intravenous NaCl. These results demonstrate that, in the ovine fetus at 130 days of gestation, neuroendocrine responses to cellular dehydration are functional, although they evidence a relatively reduced sensitivity for AVP secretion compared with the adult.  相似文献   

2.
Shi L  Mao C  Wu J  Morrissey P  Lee J  Xu Z 《Peptides》2006,27(9):2230-2238
Our previous studies have shown that central administration of angiotensin (ANG II) causes arginine vasopressin (AVP) release in the fetus at 70-90% gestation. This is evidence that the hypothalamic-neurohypophysial system is relatively mature before birth. However, few data exist regarding central ANG receptor mechanisms-mediated AVP response during fetal life. To determine roles of brain ANG receptor subtypes in this response, AT1 and AT2 receptor antagonists, losartan and PD123319, were investigated in the brain in chronically prepared ovine fetuses at the last third of gestation. Application of losartan intracerebroventricularly (i.c.v.) at 0.5 mg/kg suppressed central ANG II-stimulated plasma AVP release. Losartan at 5 mg/kg (i.c.v.) demonstrated a significant enhancement of AVP increase to i.c.v. ANG II. Associated with the increase of plasma vasopressin levels, c-fos expression in the hypothalamic neurons was significantly different between the low and high doses of losartan. The low dose losartan markedly reduced the dual immunoreactivity for FOS and AVP in the supraoptic nuclei and paraventricular nuclei after i.c.v. ANG II, whereas the high dose losartan together with ANG II, significantly increased the co-localization of positive FOS in the AVP-containing neurons than that induced by i.c.v. ANG II alone. Central ANG II induced fetal plasma vasopressin increase was not altered by PD123319. The data suggest that losartan in the fetal brain has remarkably different effects based on the doses administrated on central ANG II-related neuroendocrine effects at the late gestation, and that the AT1 mechanism is critical in the regulation of fetal body fluid homeostasis related to plasma AVP levels.  相似文献   

3.
Xu Z  Hu F  Shi L  Sun W  Wu J  Morrissey P  Yao J 《Peptides》2005,26(2):307-314
Our previous studies have shown that central administration of angiotensin II (ANG II) causes vasopressin release in the near-term fetus in utero as evidence that the hypothalamic-neurohypophysial system has relatively matured before birth. However, it is still unknown whether the vasopressin controlling centers have been functionally developed in younger fetuses. This study determined fetal plasma vasopressin levels and hypothalamic vasopressin neuron activity in the chronically instrumented pre-term ovine fetuses. Introcerebroventricular (i.c.v.) administration of ANG II did not affect fetal plasma osmolality and sodium concentrations. However, fetal plasma vasopressin levels were significantly increased ( approximately 3-fold) in response to central injection of ANG II. Central ANG II also induced vasopressin-neuron activity marked with c-fos expression in the fetal hypothalamus at pre-term. In addition, the fetal organum vasculosum of the lamina terminalis and the subfornical organ were activated. The results suggest that hypothalamic-neurohypophysial system has been relatively intact and functional at 70% gestational age, and that central angiotensin is important in inducing fetal vasopressin release in utero.  相似文献   

4.
The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 +/- 2 days) received injection of ANG II (1.5 microg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 +/- 0.2 to 4.5 +/- 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c-fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.  相似文献   

5.
Geng CS  Wan Z  Feng YH  Fan YS 《生理学报》2012,64(3):303-307
To investigate the mechanisms underlying the cholinergic agonist carbachol-induced cardiovascular responses, changes of renin-angiotensin system were examined in fetal hormonal systems. In the ovine fetal model under stressless condition, the cardiovascular function was recorded. Blood samples were collected before (during baseline period) and after the intravenous administration of carbachol. Simultaneously, the levels of angiotensin I (Ang I), angiotensin II (Ang II) and vasopressin in the fetal plasma were detected by immunoradiological method. Also, blood gas, plasma osmolality and electrolyte concentrations were analyzed in blood samples. Results showed that in chronically prepared ovine fetus, intravenous infusion of carbachol led to a significant decrease of heart rate (P < 0.05), and a transient decrease followed by an increase of blood pressure (P < 0.05) within 30 min. After the intravenous infusion of carbachol, blood concentrations of Ang I and Ang II in near-term ovine fetus were both significantly increased (P < 0.05); however, blood concentration of vasopressin, values of blood gas, electrolytes and plasma osmolality in near-term ovine fetus were not significantly changed (P > 0.05). Blood levels of Ang I and Ang II in the atropine (M receptor antagonist) + carbachol intravenous administration group was lower than those in the carbachol group without atropine administration (P < 0.05). In conclusion, this study indicates that the near-term changes of cardiovascular system induced by intravenous administration of carbachol in ovine fetus, such as blood pressure and heart rate, are associated with the changes of hormones of circulatory renin-angiotensin system.  相似文献   

6.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

7.
We examined the effects of intracerebroventricular (i.c.v.) administration of adrenomedullin 2 (AM2) on plasma oxytocin (OXT) and arginine vasopressin (AVP) levels in conscious rats. Plasma OXT levels were markedly increased 5 min after i.c.v. administration of AM2 (1 nmol/rat) compared with vehicle and remained elevated in samples taken at 10, 15, 30, and 60 min. By contrast, plasma AVP levels were not significantly elevated in samples taken between 5 and 180 min after i.c.v. administration of AM2 except at the 30-min time point. Fos-like immunoreactivity (Fos-LI) was observed in various brain areas, including the paraventricular (PVN) and the supraoptic nuclei (SON) after i.c.v. administration of AM2 (2 nmol/rat) in conscious rats (measured at 90 min post-AM2 infusion). Dual immunostaining for OXT/Fos and AVP/Fos showed that OXT-LI neurons predominantly exhibited nuclear Fos-LI compared with AVP-LI neurons in the PVN and the SON. In situ hybridization histochemistry showed that i.c.v. administration of AM2 (0.2, 1, and 2 nmol/rat) caused marked induction of the expression of the c-fos gene in the PVN and the SON. This induction was significantly reduced by pretreatment with both the calcitonin gene-related peptide (CGRP) antagonist CGRP-(8-37) (3 nmol/rat) and the AM receptor antagonist AM-(22-52) (27 nmol/rat). These results suggest that centrally administered AM2 mainly activates OXT-secreting neurons in the PVN and the SON, at least in part through the CGRP and/or AM receptors with marked elevation of plasma OXT levels in conscious rats.  相似文献   

8.
Acutely increasing peripheral angiotensin II (ANG II) reduces the maximum renal sympathetic nerve activity (RSNA) observed at low mean arterial blood pressures (MAPs). We postulated that this observation could be explained by the action of ANG II to acutely increase arterial blood pressure or increase circulating arginine vasopressin (AVP). Sustained increases in MAP and increases in circulating AVP have previously been shown to attenuate maximum RSNA at low MAP. In conscious rabbits pretreated with an AVP V1 receptor antagonist, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng x kg(-1) x min(-1)) on the relationship between MAP and RSNA when the acute pressor action of ANG II was left unopposed with that when the acute pressor action of ANG II was opposed by a simultaneous infusion of sodium nitroprusside (SNP). Intravenous infusion of ANG II resulted in a dose-related attenuation of the maximum RSNA observed at low MAP. When the acute pressor action of ANG II was prevented by SNP, maximum RSNA at low MAP was attenuated, similar to that observed when ANG II acutely increased MAP. In contrast, intravertebral infusion of ANG II attenuated maximum RSNA at low MAP significantly more than when administered intravenously. The results of this study suggest that ANG II may act within the central nervous system to acutely attenuate the maximum RSNA observed at low MAP.  相似文献   

9.
Previous studies clearly demonstrated acute actions of angiotensin II (ANG II) at one of the central circumventricular organs, the subfornical organ (SFO), but studies demonstrating a role for the SFO in the chronic actions of ANG II remain uncertain. The purpose of this study was to examine the role of the SFO in the chronic hypertensive phase of ANG II-induced hypertension. We hypothesized that the SFO is necessary for the full hypertensive response observed during the chronic phase of ANG II-induced hypertension. To test this hypothesis, male Sprague-Dawley rats were subjected to sham operation (sham rats) or electrolytic lesion of the SFO (SFOx rats). After 1 wk, the rats were instrumented with venous catheters and radiotelemetric transducers for intravenous administration of ANG II and measurement of blood pressure and heart rate, respectively. Rats were then allowed 1 wk for recovery. After 3 days of saline control infusion (7 ml of 0.9% NaCl/day), sham and SFOx rats were infused with ANG II at 10 ng.kg(-1).min(-1) i.v. for 10 consecutive days and then allowed to recover for 3 days. A 0.4% NaCl diet and distilled water were provided ad libitum. At day 5 of ANG II infusion, mean arterial pressure increased 11.7 +/- 3.0 mmHg in sham rats (n = 9) but increased only 3.7 +/- 1.4 mmHg in SFOx rats (n = 9). This trend continued through day 10 of ANG II treatment. These results support the hypothesis that the SFO is necessary for the full hypertensive response to chronic ANG II administration.  相似文献   

10.
The central renin-angiotensin system is important in the control of blood pressure in the adult. However, few data exist about the in utero development of central angiotensin-mediated pressor responses. Our recent studies have shown that the application of ANG II into the fetal brain can increase blood pressure at near term. The present study determined fetal blood pressure and heart rate in response to a central application of ANG II in the chronically prepared preterm ovine fetus, determined the action sites marked by c-Fos expression in the fetal central pathways after intracerebroventricular injection of ANG II in utero, and determined angiotensin subtype 1 receptors in the fetal hypothalamus. Central injection of ANG II significantly increased fetal mean arterial pressure (MAP). Adjusted fetal MAP against amniotic pressure was also increased by ANG II. Fetal heart rate was subsequently decreased after the central administration of ANG II and/or the increase of blood pressure. ANG II induced c-Fos expression in the central putative cardiovascular area, the paraventricular nuclei in the brain sympathetic pathway. Application of ANG II also caused intense Fos immunoreactivity in the tractus solitarius nuclei in the hindbrain. In addition, intense angiotensin subtype 1 receptors were expressed in the hypothalamus at preterm. These data demonstrate that central ANG II-related pressor centers start to function as early as at preterm and suggest that the central angiotensin-related sympathetic pathway is likely intact in the control of blood pressure in utero.  相似文献   

11.
Swallowed volumes in the fetus are greater than adult values (per body weight) and serve to regulate amniotic fluid volume. Central ANG II stimulates swallowing, and nonspecific ANG II receptor antagonists inhibit both spontaneous and ANG II-stimulated swallowing. In the adult rat, AT1 receptors mediate both stimulated drinking and pressor activities, while the role of AT2 receptors is controversial. As fetal brain contains increased ANG II receptors compared with the adult brain, we sought to investigate the role of both AT1 and AT2 receptors in mediating fetal swallowing and pressor activities. Five pregnant ewes with singleton fetuses (130 +/- 1 days) were prepared with fetal vascular and lateral ventricle (LV) catheters and electrocorticogram and esophageal electromyogram electrodes and received three studies over 5 days. On day 1 (ANG II), following a 2-h basal period, 1 ml artificial cerebrospinal fluid (aCSF) was injected in the LV. At time 4 h, ANG II (6.4 microg) was injected in the LV, and the fetus was monitored for a final 2 h. On day 3, AT1 receptor blocker (losartan 0.5 mg) was administered at 2 h, and ANG II plus losartan was administered at 4 h. On day 5, AT2 receptor blocker (PD-123319; 0.8 mg was administered at 2 h and ANG II plus PD-123319 at 4 h. In the ANG II study, LV injection of ANG II significantly increased fetal swallowing (0.9 +/- 0.1 to 1.4 +/- 0.1 swallows/min; P < 0.05). In the losartan study, basal fetal swallowing significantly decreased in response to blockade of AT1 receptors (0.9 +/- 0.1 to 0.4 +/- 0.1 swallows/min; P < 0.05), while central injection of ANG II in the presence of AT1 receptor antagonism did not increase fetal swallowing (0.6 +/- 0.1 swallows/min). In the PD-123319 study, basal fetal swallowing did not change in response to blockade of AT2 receptor (0.9 +/- 0.1 swallows/min), while central injection of ANG II in the presence of AT2 blockade significantly increased fetal swallowing (1.5 +/- 0.1 swallows/min; P < 0.05). ANG II caused significant pressor responses in the control and PD-123319 studies but no pressor response in the presence of AT1 blockade. These data demonstrate that in the near-term ovine fetus, AT1 receptor but not AT2 receptors accessible via CSF contribute to dipsogenic and pressor responses.  相似文献   

12.
Spontaneously hypertensive rats (SHR) have an activated brain angiotensin system. We hypothesized 1) that ventilation (V) would be greater in conscious SHR than in control Wistar-Kyoto (WKY) rats and 2) that intravenous infusion of the ANG II-receptor blocker saralasin would depress respiration in SHR, but not in WKY. Respiration and oxygen consumption (VO(2)) were measured in conscious aged-matched groups (n = 16) of adult female SHR and WKY. For protocol 1, rats were habituated to a plethysmograph and measurements obtained over 60-75 min. After installation of chronic intravenous catheters, protocol 2 consisted of 30 min of saline infusion ( approximately 14 microliter. kg(-1). min(-1)) followed by 40 min of saralasin (1.3 microgram. kg(-1). min(-1)). V, tidal volume (VT), inspiratory flow [VT/inspiratory time (TI)], breath expiratory time, and VO(2) were higher, and breath TI was lower in "continuously quiet" SHR. In SHR, but not in WKY rats, ANG II-receptor block decreased V, VT, and VT/TI and increased breath TI. During ANG II-receptor block, an average decrease in VO(2) in SHR was not significant. About one-half of the higher V in SHR appears to be accounted for by an ANG II mechanism acting either via peripheral arterial receptors or circumventricular organs.  相似文献   

13.
Central oxytocin (OT) neurons limit intracerebroventricular (icv) ANG II-induced NaCl intake. Because mineralocorticoids synergistically increase ANG II-induced NaCl intake, we hypothesized that mineralocorticoids may attenuate ANG II-induced activation of inhibitory OT neurons. To test this hypothesis, we determined the effect of deoxycorticosterone (DOCA; 2 mg/day) on icv ANG II-induced c-Fos immunoreactivity in OT and vasopressin (VP) neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus and also on pituitary OT and VP secretion in male rats. DOCA significantly decreased the percentage of c-Fos-positive (%c-Fos+) OT neurons in the SON and PVN, both in the magnocellular and parvocellular subdivisions, and the %c-Fos+ VP neurons in the SON after a 5-ng icv injection of ANG II. DOCA also significantly reduced the %c-Fos+ OT neurons in the SON after 10 ng ANG II and tended to attenuate 10 ng ANG II-induced OT secretion. However, the %c-Fos+ OT neurons in DOCA-treated rats was greater after 10 ng ANG II, and DOCA did not affect the %c-Fos+ OT neurons in the PVN nor VP secretion or c-Fos immunoreactivity in either the SON or PVN after 10 ng ANG II. DOCA also did not significantly alter the effect of intraperitoneal (ip) cholecystokinin (62 microg) on %c-Fos+ OT neurons or of ip NaCl (2 ml of 2 M NaCl) on the %c-Fos+ OT and VP neurons. These findings indicate that DOCA attenuates the responsiveness of OT and VP neurons to ANG II without completely suppressing the activity of these neurons and, therefore, support the hypothesis that attenuation of OT neuronal activity is one mechanism by which mineralocorticoids enhance NaCl intake.  相似文献   

14.
Angiotensin II and peptide YY (PYY) are putative neuro/humoral agents acting at several circumventricular regions. These peptides also constrict cerebral vessels. We examined the effect of acute intravenous infusion of saline, angiotensin II and peptide YY on local cerebral blood flow (14C-iodoantipyrine autoradiography) in the circumventricular and non-circumventricular brain regions of 17 conscious rats. No reductions in brain blood flow (28 regions) were observed although angiotensin II and PYY infusion elevated arterial blood pressure 15-25% without influencing heart rate, suggesting an increase in peripheral resistance. However, local blood flow was dependent on the peptide infused. During PYY infusion, blood flow was rather constant in the 20 non-circumventricular regions examined whereas an increase in blood flow and a slight decrease in cerebrovascular resistance occurred in the circumventricular regions. The area postrema exhibited the most pronounced changes--an elevation in blood flow of 44 +/- 11% and a reduction in resistance of 20 +/- 5% in comparison to that in control animals. During angiotensin II infusion, local cerebral blood flow was similar to that in controls and local cerebrovascular resistance was elevated. Thus, the local cerebral circulatory response to peptide administration was dependent on the location of the region examined (circumventricular or non-circumventricular) and on the vasoactive peptide infused.  相似文献   

15.
It has been shown that the area postrema (AP) plays a role in the development of certain types of chronic angiotensin II (ANG II)-induced hypertension in the rat but is not of great importance in the salt sensitivity of arterial pressure. It has recently been proposed, however, that elevated sodium levels may exacerbate the hypertensive effects of ANG II, which by itself dramatically affects salt sensitivity, by acting at sodium-sensing neurons in certain circumventricular organs of the brain. Thus the interactions of ANG II, sodium, and the central nervous system remain to be fully understood. The purpose of this study was to examine the role of the AP in ANG II-induced hypertension during periods of normal and elevated dietary salt. We hypothesized that an intact AP was necessary for the full development of hypertension under chronic ANG II infusion and that its role would be pronounced during periods of increased dietary sodium. To test this, male Sprague-Dawley rats underwent ablation of the area postrema (APx, n = 6) or sham operation (sham, n = 6). After 3 wk of recovery, rats were instrumented with radiotelemetry transducers for constant blood pressure and heart rate monitoring and venous catheters for vehicle infusion. After a 3-day control period of 0.9% saline infusion (7 ml/day) and 0.4% dietary sodium, a 10-day period of ANG II infusion (10 ng.kg(-1).min(-1)) was begun, immediately followed by a second 10-day period during which rats were fed a 4.0% sodium diet. By day 6 of ANG II infusion, mean arterial pressure (MAP) in APx rats had increased to 139 +/- 4 mmHg, whereas MAP in sham rats had increased to 126 +/- 3 mmHg. This difference was found to be significant and continued through day 1 of the high-salt period, after which MAP of the two groups had risen to similar levels. On day 9 of high salt, MAP was again observed to be significantly higher (162 +/- 1 mmHg) in APx rats when compared with sham rats (147 +/- 4 mmHg.) These results do not support the hypothesis that the AP is necessary for the full development of ANG II-induced hypertension at normal or elevated levels of dietary sodium.  相似文献   

16.
Experimental objectives. Because myocardial infarct is associated with overactivation of brain angiotensin II (ANG II) and vasopressin (AVP) V1a receptors we decided to determine whether AT1 and V1a receptors-mediated effects of ANG II and AVP interact in central cardiovascular control during the post-infarct state. Four groups of infarcted and four groups of sham-operated conscious rats entered the study. Results. In the infarcted rats cerebroventricular infusion of AT1 (AT1ANT, losartan) and V1a antagonist {V1aANT,d(CH(2))(5)[Tyr(Me)(2)Ala-NH(2)(9)]VP} and combined infusion of both these compounds performed 4 weeks after induction of the infarct significantly and comparably reduced mean arterial blood pressure (MABP) in comparison to control experiments (artificial cerebrospinal fluid infusion). In the sham rats MABP was not affected by any of the infusions. In control experiments MABP and HR responses to an alarming air jet stress were significantly higher in the infarcted than in the sham rats. Both responses were normalized with the same effectiveness by administration of AT1ANT, V1aANT and AT1ANT+V1aANT. In the sham rats administration of these compounds did not affect MABP and HR responses to stress. Conclusion: The results provide evidence for interaction of AT1 and V1a receptors-mediated effects of ANG II and AVP in the central cardiovascular control during the post-infarct state.  相似文献   

17.
Zhao DQ  Ai HB 《PloS one》2011,6(8):e23362

Aims

Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint water-immersion stress.

Methods

Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR).

Results

(1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31% of OT-IR neurons and 40% of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53% respectively; (3) V1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10% of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS.

Conclusion

RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to the NTS or DMV mediating the activity of the neurons by OTR and V1bR.  相似文献   

18.
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.  相似文献   

19.
In previous studies on regulation of fetal adrenocorticotropin (ACTH) secretion, corticotropin releasing factor (CRF) and arginine vasopressin (AVP) have been administered by peripheral intravascular infusion. In order to look at an alternate route of administration, we investigated the effect of continuous intracerebroventricular administration of AVP to the fetus on fetal plasma ACTH and fetal and maternal plasma cortisol concentrations. Sheep fetuses (n = 9) were instrumental with carotid artery and lateral cerebral ventricular catheters. Fetuses were given intracerebroventricular infusion from 125-134 days gestational age of artificial cerebrospinal fluid vehicle (n = 4), or AVP 250 mu U.min-1 continuously in artificial cerebrospinal fluid vehicle (n =5). Fetal blood was obtained daily between 09.00 and 12.00h and 20.00 and 23.00h. Over the infusion period, fetal plasma ACTH and cortisol concentrations in AVP infused fetuses increased (P less than 0.05) compared with the vehicle infused group. Gestation length for the fetuses in the AVP and vehicle infused groups were 139 +/- 4.9 (n =4) and 145 +/- 4.6 (n = 3) days respectively (n.s.). Fetal plasma AVP concentrations in the AVP infused group were not different from the vehicle infused group.  相似文献   

20.
Short-term intravenous infusion of angiotensin II (ANG II) into conscious rabbits reduces the range of renal sympathetic nerve activity (RSNA) by attenuating reflex disinhibition of RSNA. This action of ANG II to attenuate the arterial baroreflex range is exaggerated when ANG II is directed into the vertebral circulation, which suggests a mechanism involving the central nervous system. Because an intact area postrema (AP) is required for ANG II to attenuate arterial baroreflex-mediated bradycardia and is also required for maintenance of ANG II-dependent hypertension, we hypothesized that attenuation of maximum RSNA during infusion of ANG II involves the AP. In conscious AP-lesioned (APX) and AP-intact rabbits, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng x kg(-1) x min(-1)) on the relationship between mean arterial blood pressure (MAP) and RSNA. Intravenous infusion of ANG II into AP-intact rabbits resulted in a dose-related attenuation of maximum RSNA observed at low MAP. In contrast, ANG II had no effect on maximum RSNA in APX rabbits. To further localize the central site of ANG II action, its effect on the arterial baroreflex was assessed after a midcollicular decerebration. Decerebration did not alter arterial baroreflex control of RSNA compared with the control state, but as in APX, ANG II did not attenuate the maximum RSNA observed at low MAP. The results of this study indicate that central actions of peripheral ANG II to attenuate reflex disinhibition of RSNA not only involve the AP, but may also involve a neural interaction rostral to the level of decerebration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号