首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

2.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

3.
The purpose of this investigation was to determine the mechanomyography (MMG) and electromyography (EMG) amplitude and mean power frequency (MPF) vs. eccentric isokinetic torque relationships for the biceps brachii muscle. Nine adults (mean +/- SD age = 23.1 +/- 2.9 years) performed submaximal to maximal eccentric isokinetic muscle actions of the dominant forearm flexors. After determination of isokinetic peak torque (PT), the subjects randomly performed submaximal step muscle actions in 10% increments from 10 to 90% PT. Polynomial regression analyses indicated that the MMG amplitude vs. eccentric isokinetic torque relationship was best fit with a quadratic model (R(2) = 0.951), where MMG amplitude increased from 10 to 60% PT and then plateaued from 60 to 100% PT. There were linear increases in MMG MPF (r(2) = 0.751) and EMG amplitude (r(2) = 0.988) with increases in eccentric isokinetic torque, but there was no significant change in EMG MPF from 10 to 100% PT. The results suggested that for the biceps brachii, eccentric isokinetic torque was increased to approximately 60% PT through concurrent modulation of the number of active motor units and their firing rates, whereas additional torque above 60% PT was produced only by increases in firing rates. These findings contribute to current knowledge of motor-control strategies during eccentric isokinetic muscle actions and could be useful in the design of training programs.  相似文献   

4.
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.  相似文献   

5.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

6.
The purpose of this investigation was to determine the effect of hyperhydration on the electromyographic (EMG) and mechanomyographic (MMG) responses during isometric and isokinetic muscle actions of the biceps brachii. Eight (22.1 +/- 1.8 years, 79.5 +/- 22.8 kg) subjects were tested for maximal isometric, submaximal isometric, and maximal concentric isokinetic muscle strength in either a control (C) or hyperhydrated (H) state induced by glycerol ingestion while the EMG and MMG signals were recorded. Although fluid retention was significantly greater during the H protocol, the analyses indicated no change in torque, EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, or MMG MPF with hyperhydration. These results indicated that glycerol-induced fluid retention does not affect the torque-producing capabilities of a muscle, the impulses (EMG) going to a muscle, or muscular vibrations (MMG). It has been suggested that EMG and MMG can be used as direct electrical/mechanical monitoring, which could be presented to trainers and athletes; however, before determining the utility of these signals, the MMG and EMG responses should be examined under a variety of conditions such as in the present study.  相似文献   

7.
The purpose of this study was to determine if an active warm-up affects peak torque (PT), rate of torque development (RTD), and the electromyographic (EMG) and mechanomyographic (MMG) signals. Twenty-one men (mean age ± SD: 24.0 ± 2.7 years) visited the exercise physiology laboratory on 2 occasions. During the first visit, they either performed an active warm-up (10 minutes of stationary cycling at 70% of predicted maximum heart rate) or sat quietly (no warm-up). Participants were then tested for isometric and isokinetic (60°, 180°, and 300°·s) PT, and RTD (measured as S-gradient) on an isokinetic dynamometer. Electromyographic and MMG sensors were placed over the vastus lateralis muscle to monitor the electrical and mechanical aspects of muscle contractions, respectively. The testing protocol used for the first visit was repeated for the second visit, but the preexercise treatment (warm-up, no warm-up) not given during the first visit was administered. The results indicated that an active warm-up did not affect PT, RTD, or measures of muscle activation as reflected by EMG amplitude, EMG frequency, or MMG frequency (p > 0.05). However, MMG amplitude at 180°·s was significantly greater in the warm-up condition compared with the no warm-up condition. The isolated increase in MMG amplitude suggested that warm-up may have affected the mechanical properties of muscle by reducing muscular stiffness or decreasing intramuscular fluid pressure, but that it was not sufficient to influence performance.  相似文献   

8.
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.  相似文献   

9.
The purpose of this investigation was to determine the mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque (or force) relationships during isokinetic and isometric muscle actions of the biceps brachii. Ten adults (mean +/- SD age = 21.6 +/- 1.7 years) performed submaximal to maximal isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects randomly performed submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Polynomial regression analyses indicated that MMG amplitude increased linearly with torque during both the isokinetic (r2 = 0.982) and isometric (r2 = 0.956) muscle actions. From 80% to 100% of isometric MVC, however, MMG amplitude appeared to plateau. Cubic models provided the best fit for the MMG MPF versus isokinetic (R2 = 0.786) and isometric (R2 = 0.940) torque relationships, although no significant increase in MMG MPF was found from 10% to 100% of isokinetic PT. For the isometric muscle actions, however, MMG MPF remained relatively stable from 10% to 50% MVC, increased from 50% to 80% MVC, and decreased from 80% to 100% MVC. The results demonstrated differences in the MMG amplitude and MPF versus torque relationships between the isokinetic and isometric muscle actions. These findings suggested that the time and frequency domains of the MMG signal may be useful for describing the unique motor control strategies that modulate dynamic versus isometric torque production.  相似文献   

10.
The primary purpose of the present study was to compare the fast Fourier transform (FFT) with the discrete wavelet transform (DWT) for determining the mechanomyographic (MMG) and electromyographic (EMG) center frequency [mean power frequency (mpf), median frequency (mdf), or wavelet center frequency (cf)] patterns during fatiguing isokinetic muscle actions of the biceps brachii. Seven men (mean+/-SD age=23+/-3 years) volunteered to perform 50 consecutive maximal, concentric isokinetic muscle actions of the dominant forearm flexors at a velocity of 180 degrees s(-1). Non-parametric "run" tests indicated significant (p<0.05) trends in the MMG and EMG signals for the 5th, 25th, and 45th muscle actions for all subjects, thereby confirming non-stationarity of the MMG and EMG signals. There were significant (p<0.05) correlations among the average normalized mpf, mdf, and cf values for contractions 1-50 for both MMG (r=0.671-0.935) and EMG (r=0.956-0.987). Polynomial regression analyses demonstrated quadratic decreases in normalized MMG mpf (R2=0.439), MMG mdf (R2=0.258), MMG cf (R2=0.359), EMG mpf (R2=0.952), EMG mdf (R2=0.914) and EMG cf (R2=0.888) across repetitions. The primary finding of this study was the similarity in the mpf, mdf, and cf patterns for both MMG and EMG, which suggested that, despite the concerns over non-stationarity, Fourier based methods are acceptable for determining the patterns for normalized MMG and EMG center frequency during fatiguing dynamic muscle actions at moderate velocities.  相似文献   

11.
This study compared the patterns of mechanomyographic (MMG) amplitude and mean power frequency vs. torque relationships in men and women during isometric muscle actions of the biceps brachii. Seven men (mean age 23.9 +/- 3.5 yrs) and 8 women (mean 21.0 +/- 1.3 yrs) performed submaximal to maximal isometric muscle actions of the dominant forearm flexors. Following determination of the isometric maximum voluntary contraction (MVC), they randomly performed submaximal step muscle actions in 10% increments from 10% to 90% MVC. Polynomial regression analyses indicated that the MMG amplitude vs. isometric torque relationship for the men was best fit with a cubic model (R(2) = 0.983),,where MMG amplitude increased slightly from 10% to 20% MVC, increased rapidly from 20% to 80% MVC, and plateaued from 80% to 100% MVC. For the women, MMG amplitude increased linearly (r(2) = 0.949) from 10% to 100% MVC. Linear models also provided the best fit for the MMG mean power frequency vs. isometric torque relationship in both the men (r(2) = 0.813) and women (r(2) = 0.578). The results demonstrated gender differences in the MMG amplitude vs. isometric torque relationship, but similar torque-related patterns for MMG mean power frequency. These findings suggested that the plateau in MMG amplitude at high levels of isometric torque production for the biceps brachii in the men, but not the women, may have been due to greater isometric torque, muscle stiffness, and/or intramuscular fluid pressure in the men, rather than to differences in motor unit activation strategies for modulating isometric torque production.  相似文献   

12.
The purpose of this study was to examine the strength, electromyographic (EMG), and mechanomyographic (MMG) responses after workouts designed to elicit fatigue and muscle damage vs. only fatigue. Thirteen men (mean ± SD age = 23.7 ± 2.2 years) performed 6 sets of 10 maximal concentric isokinetic (CONexercise) or eccentric isokinetic (ECCexercise) muscle actions of the dominant forearm flexors on 2 separate days. Before (PRE) and after (POST) these workouts, peak torque (PT), surface EMG, and MMG signals were measured during maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the forearm flexors. The subjects also visited the laboratory for a control (CTL) visit with quiet resting between the PRE and POST measurements, rather than performing the CONexercise or ECCexercise. The results showed that there were significant 26 and 25% decreases in PT after the CONexercise and ECCexercise, respectively, and these decreases were statistically equivalent for the concentric, eccentric, and isometric muscle actions. There were also 19 and 23% reductions in normalized EMG amplitude after the CONexercise and ECCexercise, respectively, but no changes in EMG mean frequency (MNF), MMG amplitude, or MMG MNF. These findings demonstrated a neural component(s) to the strength decrement after CONexercise and ECCexercise. It is possible that after these 2 types of exercise, activation of free nerve endings that are sensitive to muscle damage and pH changes resulted in inhibition of alpha motor neurons, causing decreased muscle activation and torque. These findings suggest that training programs designed to minimize strength loss during competition should consider the fact that at least some of this loss is because of neural factors.  相似文献   

13.
The purpose of this study was to compare a piezoelectric contact sensor with an accelerometer for measuring the mechanomyographic (MMG) signal from the biceps brachii during submaximal to maximal isokinetic and isometric forearm flexion muscle actions. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), 10 adults (mean+/-SD age=22.8+/-2.7yrs) performed randomly ordered, submaximal step muscle actions of the dominant forearm flexors in 20% increments from 20% to 80% PT and MVC. Surface MMG signals were recorded simultaneously from a contact sensor and an accelerometer placed over the belly of the biceps brachii muscle. During the isokinetic and isometric muscle actions, the contact sensor and accelerometer resulted in linear increases in normalized MMG amplitude with torque (r(2) range=0.84-0.97) but the linear slope of the normalized MMG amplitude versus isokinetic torque relationship for the accelerometer was less (p<0.10) than that of the contact sensor. There was no significant (p>0.05) relationship for normalized MMG mean power frequency (MPF, %max) versus isokinetic and isometric torque for the contact sensor, but the accelerometer demonstrated a quadratic (R(2)=0.94) or linear (r(2)=0.83) relationship for the isokinetic and isometric muscle actions, respectively. There were also a number of significant (p<0.05) mean differences between the contact sensor and accelerometer for normalized MMG amplitude or MPF values. These findings indicated that in some cases involving dynamic and isometric muscle actions, the contact sensor and accelerometer resulted in different torque-related responses that may affect the interpretation of the motor control strategies involved.  相似文献   

14.
The purpose of this study was to examine the acute effects of static stretching on peak torque (PT) and the joint angle at PT during maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors at 60 and 180 degrees x s(-1) for the stretched and unstretched limbs in women. Thirteen women (mean age +/- SD = 20.8 +/- 0.8 yr; weight +/- SD = 63.3 +/- 9.5 kg; height +/- SD = 165.9 +/- 7.9 cm) volunteered to perform separate maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors with the dominant and nondominant limbs on a Cybex 6000 dynamometer at 60 and 180 degrees x s(-1). PT (Nm) and the joint angle at PT (degrees) were recorded by the dynamometer software. Following the initial isokinetic assessments, the dominant leg extensors were stretched (mean stretching time +/- SD = 21.2 +/- 2.0 minutes) using 1 unassisted and 3 assisted static stretching exercises. After the stretching (4.3 +/- 1.4 minutes), the isokinetic assessments were repeated. The statistical analyses indicated no changes (p > 0.05) from pre- to poststretching for PT or the joint angle at PT. These results indicated that static stretching did not affect PT or the joint angle at PT of the leg extensors during maximal, voluntary, eccentric isokinetic muscle actions at 60 and 180 degrees x s(-1) in the stretched or unstretched limbs in women. In conjunction with previous studies, these findings suggested that static stretching may affect torque production during concentric, but not eccentric, muscle actions.  相似文献   

15.
The purpose of this pilot study was to determine the influence of oral contraceptives (OC) on electromyography (EMG) and mechanomyography (MMG) during isometric (ISO) muscle actions of the rectus femoris. Two groups of women (Mean +/- SEM, 24 +/- 1 yrs, 1.68 +/- 0.02 m, 70.97 +/- 4.81 kg) were recruited and tested five times throughout one complete menstrual cycle. The first group (n=7) were not taking hormonal treatment (NOC) and the OC group (n=6) had been taking exogenous hormones for at least six months prior. Each participant performed maximal ISO muscle actions (MVC) of the leg extensors on a Cybex II isokinetic dynamometer followed by randomly assigned sub-maximal ISO muscle actions. Bipolar surface EMG electrodes were placed over the rectus femoris with a piezoelectric MMG recording device placed between the two electrodes. Three separate three way (group x day x %MVC) mixed factorial repeated measures ANOVAs were used to determine differences in torque, EMG and MMG between NOC and OC subjects. There were no significant three-way interactions involving group for normalized torque, EMG or MMG. These results indicated that OC does not have an effect on torque, EMG or MMG during ISO muscle actions of the rectus femoris.  相似文献   

16.
The purpose of this study was to investigate the effect of elastic compression on muscle strength, electromyographic (EMG), and mechanomyographic (MMG) responses of quadriceps femoris during isometric and isokinetic contractions. Twelve participants performed 5 s isometric maximal voluntary contractions (MVC) and 25 consecutive and maximal isokinetic knee extensions at 60 and 300 °/s with no (control, CC), medium (MC), and high (HC) compression applied to the muscle. The EMG and MMG signals were collected simultaneously with muscle isometric and isokinetic strength data. The results showed that the elevated compression did not improve peak torque, peak power, average power, total work, and regression of torque in the isometric and isokinetic contractions. However, the root mean squared value of EMG in both HC and MC significantly decreased compared with CC at 60 and 300 °/s (p < 0.01). Furthermore, the EMG mean power frequency in HC was significantly higher than that in CC at 60 °/s (p < 0.05) whereas no significant compression effect was found in the MMG mean power frequency. These findings provide preliminary evidence suggesting that the increase in local compression pressure may effectively increase muscle efficiency and this might be beneficial in reducing muscle fatigue during concentric isokinetic muscle contractions.  相似文献   

17.
The purpose of this investigation was to examine the effects of 3 days of velocity-specific isokinetic training on peak torque (PT) and the electromyographic (EMG) signal. Thirty adult women were randomly assigned to a slow-velocity training (SVT), fast-velocity training (FVT), or control (CON) group. All subjects performed maximal, concentric, isokinetic leg extension muscle actions at 30 and 270 degrees .s(-1) for the determination of PT on visits 1 (pretest) and 5 (posttest). Electromyographic signals were recorded from the vastus lateralis, rectus femoris, and vastus medialis muscles during each test. The training groups performed 4 sets of 10 maximal repetitions at 30 degrees .s(-1) (SVT group) or 270 degrees .s(-1) (FVT group) on visits 2, 3, and 4. For the SVT group, PT increased from pretest to posttest at 30 and 270 degrees .s(-1). The increase in PT at 30 degrees .s(-1) was greater than at 270 degrees .s(-1). For the FVT group, PT increased at 270 degrees .s(-1) only. For the CON group, there were no changes in PT at either velocity. There were no pretest to posttest changes in EMG amplitude or mean power frequency (MPF) for any group at any velocity, with the exception of an increase in EMG MPF from the vastus medialis muscle at 270 degrees .s(-1) for the FVT group. The results indicated that 3 sessions of slow velocity (30 degrees .s(-1)) isokinetic training resulted in an increase in PT at slow and fast velocities (30 and 270 degrees .s(-1)), whereas training at the fast velocity (270 degrees .s(-1)) increased PT only at 270 degrees .s(-1). The lack of consistent increases in EMG amplitude or MPF suggested that the training-induced increases in leg extension PT were not caused by increased activation of the superficial muscles of the quadriceps femoris. The important implication for coaches, trainers, and physical therapists is that significant muscular performance gains may be achieved even after very short training periods, but determination of the specific physiological adaptation(s) underlying these performance gains requires further investigation.  相似文献   

18.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

19.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

20.
The purpose of this study was to examine the electromyographic (EMG) instantaneous amplitude (IA) and instantaneous mean power frequency (IMPF) patterns for the biceps brachii muscle across a range of motion during maximal and submaximal concentric isokinetic muscle actions of the forearm flexors. Ten adults (mean +/- SD age = 22.0 +/- 3.4 years) performed a maximal and a submaximal [20% peak torque (PT)] concentric isokinetic forearm flexion muscle action at a velocity of 30 degrees s(-1). The surface EMG signal was detected from the biceps brachii muscle with a bipolar electrode arrangement, and the EMG IA and IMPF versus time relationships were examined for each subject using first- and second-order polynomial regression models. The results indicated that there were no consistent patterns between subjects for EMG IA or IMPF with increases in torque across the range of motion. Some of the potential nonphysiological factors that could influence the amplitude and/or frequency contents of the surface EMG signal during a dynamic muscle action include movement of the muscle fibers and innervation zone beneath the skin surface, as well as changes in muscle fiber length and the thickness of the tissue layer between the muscle and the recording electrodes. These factors may affect the EMG IA and IMPF patterns differently for each subject, thereby increasing the difficulty of drawing any general conclusions regarding the motor control strategies that increase torque across a range of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号