首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ERp57 is a member of the protein disulphide isomerase family of oxidoreductases, which are involved in native disulphide bond formation in the endoplasmic reticulum of mammalian cells. This enzyme has been shown to be associated with both calnexin and calreticulin and, therefore, has been proposed to be a glycoprotein-specific oxidoreductase. Here, we identify endogenous substrates for ERp57 by trapping mixed disulphide intermediates between enzyme and substrate. Our results demonstrate that the substrates for this enzyme are mostly heavily glycosylated, disulphide bonded proteins. In addition, we show that the substrate proteins share common structural domains, indicating that substrate specificity may involve specific structural features as well as the presence of an oligosaccharide side chain. We also show that the folding of two of the endogenous substrates for ERp57 is impaired in ERp57 knockout cells and that prevention of an interaction with calnexin or calreticulin perturbs the folding of some, but not all, substrates with multiple disulphide bonds. These results suggest a specific role for ERp57 in the isomerisation of non-native disulphide bonds in specific glycoprotein substrates.  相似文献   

2.
In this study, we screened for protein disulfide isomerase (PDI)-binding proteins in bovine liver microsomes under strict salt concentrations, using affinity column chromatography. One main band observed using SDS-PAGE was identified as ERp57 (one of the PDI family proteins) by LC-MS/MS analysis. The K(D) value of PDI binding to ERp57 was calculated as 5.46x10(-6)M with the BIACORE system. The interactions between PDI and ERp57 occurred specifically at their a and b domains, respectively. Interestingly, low concentrations of ERp57 enhanced the chaperone activity of PDI, while high concentrations interfered with chaperone activity. On the other hand, ERp57 did not affect the isomerase activity of PDI. Additionally, following pre-incubation of ERp57 with calreticulin (CRT), decreased interactions were observed between ERp57 and PDI, and vice versa. Based on the data, we propose that once ERp57 binds to PDI or CRT, the resultant complex inhibits further interactions. Therefore, ERp57 selectively forms a protein-folding complex with PDI or CRT in ER.  相似文献   

3.
ERp29 was recently characterized biochemically as a novel protein that resides in mammalian endoplasmic reticulum (ER). Here we applied immunochemical procedures at the cellular level to investigate the hypothesized role of ERp29 in secretory protein production. ERp29 was localized exclusively to the ER/nuclear envelope of MDCK cells using confocal immunocytochemistry and comparative markers of the ER lumen, ER/Golgi membrane, nuclei, and mitochondria. A predominant association with rough ER was revealed by sucrose-gradient analysis of rat liver microsomes. Immunohistochemistry showed ERp29 expression in 35 functionally distinct cell types of rat, establishing ERp29 as a general ER marker. The ERp29 expression profile largely paralleled that of protein disulfide isomerase (PDI), the closest relative of ERp29, consistent with a role in secretory protein production. However strikingly different ERp29/PDI ratios were observed in various cell types, suggesting independent regulation and functional roles. Together, these findings associate ERp29 primarily with the early stages of secretory protein production and implicate ERp29 in a distinct functional role that is utilized in most cells. Our identification of several ERp29-enriched cell types suggests a potential selectivity of ERp29 for non-collagenous substrates and provides a physiological foundation for future investigations.  相似文献   

4.
In human cells, Ero1-Lalpha and -Lbeta (hEROs) regulate oxidative protein folding by selectively oxidizing protein disulfide isomerase. Specific protein--protein interactions are probably crucial for regulating the formation, isomerization and reduction of disulfide bonds in the endoplasmic reticulum (ER). To identify molecules involved in ER redox control, we searched for proteins interacting with Ero1-Lalpha. Here, we characterize a novel ER resident protein (ERp44), which contains a thioredoxin domain with a CRFS motif and is induced during ER stress. ERp44 forms mixed disulfides with both hEROs and cargo folding intermediates. Whilst the interaction with transport-competent Ig-K chains is transient, ERp44 binds more stably with J chains, which are retained in the ER and eventually degraded by proteasomes. ERp44 does not bind a short-lived ribophorin mutant lacking cysteines. Its overexpression alters the equilibrium of the different Ero1-Lalpha redox isoforms, suggesting that ERp44 may be involved in the control of oxidative protein folding.  相似文献   

5.
Protein disulfide isomerase (PDI)-like proteins act as oxido-reductases and chaperones in the endoplasmic reticulum (ER). How oligomerization of the PDI-like proteins control these activities is unknown. Here we show that dimerization of ERp29, a PDI-like protein, regulates its protein unfolding and escort activities. We have demonstrated previously that ERp29 induces the local unfolding of polyomavirus in the ER, a step required for viral infection. We now find that, in contrast to wild-type ERp29, a mutant ERp29 (D42A) that dimerizes inefficiently is unable to unfold polyomavirus or stimulate infection. A compensatory mutation that partially restores dimerization to the mutant ERp29 (G37D/D42A) rescues ERp29 activity. These results indicate that dimerization of ERp29 is crucial for its protein unfolding function. ERp29 was also suggested to act as an escort factor by binding to the secretory protein thyroglobulin (Tg) in the ER, thereby facilitating its secretion. We show that this escort function likewise depends on ERp29 dimerization. Thus our data demonstrate that dimerization of a PDI-like protein acts to regulate its diverse ER activities.  相似文献   

6.
Calnexin and ERp57 act cooperatively to ensure a proper folding of proteins in the endoplasmic reticulum (ER). Calnexin contains two domains: a lectin domain and an extended arm termed the P-domain. ERp57 is a protein disulfide isomerase composed of four thioredoxin-like repeats and a short basic C-terminal tail. Here we show direct interactions between the tip of the calnexin P-domain and the ERp57 basic C-terminus by using NMR and a novel membrane yeast two-hybrid system (MYTHS) for mapping protein interactions of ER proteins. Our results prove that a small peptide derived from the P-domain is active in binding ERp57, and we determine the structure of the bound conformation of the P-domain peptide. The experimental strategy of using the MYTHS two-hybrid system to map interaction sites between ER proteins, together with NMR, provides a powerful new strategy for establishing the function of ER complexes.  相似文献   

7.
The synthesis of proteins in the endoplasmic reticulum (ER) is limited by the rate of correct disulfide bond formation. This process is carried out by protein disulfide isomerases, a family of ER proteins which includes general enzymes such as PDI that recognize unfolded proteins and others that are selective for specific proteins or classes. Using small-angle X-ray scattering and X-ray crystallography, we report the structure of a selective isomerase, ERp57, and its interactions with the lectin chaperone calnexin. Using isothermal titration calorimetry and NMR spectroscopy, we show that the b' domain of ERp57 binds calnexin with micromolar affinity through a conserved patch of basic residues. Disruption of this binding site by mutagenesis abrogates folding of RNase B in an in vitro assay. The relative positions of the ERp57 catalytic sites and calnexin binding site suggest that activation by calnexin is due to substrate recruitment rather than a direct stimulation of ERp57 oxidoreductase activity.  相似文献   

8.
We have cloned, sequenced, and expressed full length cDNA clones encoding two abundant, luminal endoplasmic reticulum proteins (ERp), ERp59/PDI and ERp72. ERp59/PDI has been identified as the microsomal enzyme protein disulfide isomerase (PDI). An analysis of the amino acid sequence of ERp72 showed that it shared sequence identity with ERp59/PDI at three discrete regions, having three copies of the sequences that are thought to be the CGHC-containing active sites of ERp59/PDI. Thus, ERp72 appears to be a newly described member of the family of CGHC-containing proteins. ERp59/PDI has the sequence KDEL at its COOH terminus while ERp72 has the related sequence KEEL. Removal of the KDEL of ERp59/PDI or the KEEL of ERp72 by in vitro mutagenesis techniques and subsequent analysis of the mutants in transient expression assays, showed that both sequences are endoplasmic reticulum retention signals for their respective proteins. The most dramatic difference in secretion between the wild type and the mutant forms of the protein was seen in the case of ERp72.  相似文献   

9.
Expression of the glucose-regulated proteins (GRPs), GRP78 and GRP94, is induced by a variety of stress conditions including treatment of cells with tunicamycin or the calcium ionophore A23187. The stimulus for induction of these resident endoplasmic reticulum (ER) proteins appears to be accumulation of misfolded or underglycosylated protein within the ER. We have studied the induction of mRNAs encoding two other resident ER proteins, ERp72 and protein disulfide isomerase (PDI), during the stress response in Chinese hamster ovary cells. ERp72 shares amino acid sequence homology with PDI within the presumed catalytic active sites. ERp72 mRNA and, to a lesser degree, PDI mRNA were induced by treatment of Chinese hamster ovary cells with tunicamycin or A23187. These results identify ERp72 as a member of the GRP family. Stable high level overproduction of ERp72 or PDI from recombinant expression vectors did not alter the constitutive or induced expression of other GRPs. High level overexpression resulted in secretion of the overproduced protein specifically but not other resident ER proteins. This suggests that the ER retention mechanism is mediated by more specific interactions than just KDEL sequence recognition.  相似文献   

10.
A protein of molecular weight 60 kDa was purified from the culture medium of a murine colon carcinoma cell line, colon26, and its partial amino-acid sequence determined. Extremely high homology was found with the deduced sequence from cDNA of rat ERp61, earlier found to be an endoplasmic reticulum (ER)-resident protein with redox activity and a similar structure to protein disulfide isomerase (PDI). Western blotting analysis showed that colon26 cells secrete a significant amount of ERp61 into culture medium, although most remains intracellular. The thiol:protein disulfide oxidoreductase activity of the purified mouse ERp61 was demonstrated by insulin-reduction assay. The ER location of the protein in fibroblasts was immunocytochemically confirmed by double staining for ERp61 and another ER-resident protein, PDI or Hsp47. Immunohistochemical studies of murine tissues showed a ubiquitous distribution of ERp61 in a wide variety of cell types. However, it was particularly abundant in plasma cells, mucus-secreting cells in various tissues, neuroendocrine cells including neurons, and follicular epithelia of thyroid gland that actively synthesize and secrete proteins containing cysteine residues. Furthermore, a high correlation was observed between intracellular amounts of ERp61 and immunoglobulin production by hybridoma cells. These results indicate that ERp61 may be involved in disulfide bond formation for such proteins.  相似文献   

11.
12.
Folding and post-translational modification of the thyroid hormone precursor, thyroglobulin (Tg), in the endoplasmic reticulum (ER) of the thyroid epithelial cells is facilitated by several molecular chaperones and folding enzymes, such as BiP, GRP94, calnexin, protein disulfide isomerase, ERp72, and others. They have been shown to associate simultaneously and/or sequentially with Tg in the course of its maturation, thus forming large heterocomplexes in the ER of thyrocytes. Here we present evidence that such complexes include a novel member, an ER-resident lumenal protein, ERp29, which is present in all mammalian tissues with exceptionally high levels of expression in the secretory cells. ERp29 was induced upon treatment of FRTL-5 rat thyrocytes with the thyroid-stimulating hormone, which is essential for the maintenance of thyroid cells and Tg biosynthesis. Chemical cross-linking followed by the cell lysis and immunoprecipitation of ERp29 or Tg revealed association of these proteins and additionally, immunocomplexes that also included major ER chaperones, BiP and GRP94. Sucrose density gradient analysis indicated co-localization of ERp29 with Tg and BiP in the fractions containing large macromolecular complexes. This was supported by immunofluorescent microscopy showing co-localization of ERp29 with Tg in the putative transport vesicular structures. Affinity chromatography using Tg as an affinity ligand demonstrated that ERp29 might be selectively isolated from the FRTL-5 cell lysate or purified lumenal fraction of rat liver microsomes along with the other ER chaperones. Preferential association with the urea-denatured Tg-Sepharose was indicative of either direct or circuitous ERp29/Tg interactions in a chaperone-like manner. Despite the presence of the C-terminal ER-retrieval signal, significant amounts of ERp29 were also recovered from the culture medium of stimulated thyrocytes, indicating ERp29 secretion. Based on these data, we suggest that the function of ERp29 in thyroid cells is connected with folding and/or secretion of Tg.  相似文献   

13.
14.
Protein disulfide isomerase (PDI, ERp59), ERp72, and ERp61 are luminal proteins of the endoplasmic reticulum (ER) that are characterized by the presence of sequences corresponding to the active site regions of PDI. Each one of these proteins possesses a different COOH-terminal tetrapeptide ER retention signal. In order to investigate what other tetrapeptide sequences could serve as retention signals and to determine to what extent the function of the retention signal is modulated by the protein carrying the signal, we have constructed a set of mutants of two of these resident ER proteins, PDI and ERp72. In each of these proteins, the wild type tetrapeptide sequences were replaced by each member of the set of the 12 possible combinations consisting of (K,R,Q)-(D,E)-(D,E)-L. Analysis of the efficiency of retention of the variant proteins when each was transiently expressed in COS cells showed that the retention efficiencies vary with both the COOH-terminal sequence and with the protein that carries this sequence.  相似文献   

15.
The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.  相似文献   

16.
STIM1 is an endoplasmic reticulum (ER) membrane Ca(2+) sensor responsible for activation of store-operated Ca(2+) influx. We discovered that STIM1 oligomerization and store-operated Ca(2+) entry (SOC) are modulated by the ER oxidoreductase ERp57. ERp57 interacts with the ER luminal domain of STIM1, with this interaction involving two conserved cysteine residues, C(49) and C(56). SOC is accelerated in the absence of ERp57 and inhibited in C(49) and C(56) mutants of STIM1. We show that ERp57, by ER luminal interaction with STIM1, has a modulatory role in capacitative Ca(2+) entry. This is the first demonstration of a protein involved in ER intraluminal regulation of STIM1.  相似文献   

17.
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.  相似文献   

18.
Recently we cloned and described ERp29, a novel 29-kDa endoplasmic reticulum (ER) protein that is widely expressed in rat tissues. Here we report our original isolation of ERp29 from dental enamel cells, and the comprehensive sequence analysis that correlated ERp29 with its cognate cDNA, both in enamel cells and liver. Fractionation of enamel cells using a new freeze-thaw procedure showed that ERp29 partitioned with known reticuloplasmins, and not with soluble proteins from mitochondria or cytosol. The absence of ERp29 in secreted enamel matrix indicated that the C-terminal tetrapeptide (KEEL motif) confers effective ER-retention in enamel cells. ERp29 behaved as a single species (approximately 40 kDa) during size-exclusion chromatography of liver reticuloplasm, suggesting that most ERp29 is not stably associated with other proteins. Immunoblot analysis showed that ERp29 was up-regulated during enamel secretion and expressed most highly in secretory tissues, indicative of a role in secretory-protein synthesis. Unlike other reticuloplasmins, ERp29 was down-regulated during enamel mineralization and thereby dissociated from a calcium-handling role. Tissue-specific variations in ERp29 molecular abundance were revealed by quantification of reticuloplasmin mole ratios. In conclusion: (a) ERp29 is a novel reticuloplasmin of general functional importance; (b) a unique role in protein processing is implicit from the distinctive expression patterns and molecular structure; (c) ERp29 is primarily involved in normal protein secretory events, not the ER stress response; (d) a major role is likely in tissues where ERp29 was equimolar with established molecular chaperones and foldases. This study implicates ERp29 as a new member of the ER protein-processing machinery, and identifies tissues where the physiological role of ERp29 is most likely to be clearly manifested.  相似文献   

19.
20.
ERp57 is a multifunctional thiol-disulfide oxidoreductase   总被引:4,自引:0,他引:4  
The thiol-disulfide oxidoreductase ERp57 is a soluble protein of the endoplasmic reticulum and the closest known homologue of protein disulfide isomerase. The protein interacts with the two lectin chaperones calnexin and calreticulin and thereby promotes the oxidative folding of newly synthesized glycoproteins. Here we have characterized several fundamental structural and functional properties of ERp57 in vitro, such as the domain organization, shape, redox potential, and the ability to catalyze different thiol-disulfide exchange reactions. Like protein disulfide isomerase, we find ERp57 to be comprised of four structural domains. The protein has an elongated shape of 3.4 +/- 0.1 nm in diameter and 16.8 +/- 0.5 nm in length. The two redox-active a and a' domains were determined to have redox potentials of -0.167 and -0.156 V, respectively. Furthermore, ERp57 was shown to efficiently catalyze disulfide reduction, disulfide isomerization, and dithiol oxidation in substrate proteins. The implications of these findings for the function of the protein in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号