首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrids of 1-deoxynojirimycin (DNJ) and aryl-1,2,3-triazole have been synthesized with a view to identifying an inhibitor of both alpha-glucosidase and methionine aminopeptidase 2 (MetAP2). One compound was a potent inhibitor of alpha-glucosidase at both the enzyme and cellular level, and this agent also inhibited bovine aortic endothelial cell (BAEC) growth and tube formation. The anti-proliferative activity of this hybrid is due to its ability to induce cell-cycle arrest in the G(1) phase. The novel agent caused a reduction in the expression of cyclin D1 but did not promote apoptosis or inhibit the phosphorylation of ERK1/2. These observations indicate that its mechanism of action is distinct from fumagillin and its analogues, which inhibit MetAP2. Stress-fibre assembly in BAECs was abolished by the novel agent indicating that the inhibition of BAEC tube formation observed is partially a result of a reduction in cell motility.  相似文献   

2.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

3.
Daio-Orengedokuto is a combination drug that has inhibitory effects on HMG-CoA reductase and pancreatic lipase. Here we investigated whether Daio-Orengedokuto has effects on vascular endothelial cells. To determine its effects on blood vessels, we examined roles of Daio-Orengedokuto in cell migration, cell apoptosis and cell cycle progression over bovine aortic endothelial cells (BAECs). Interestingly, Daio-Orengedokuto was shown to work as an anti-apoptotic agent, a cell cycle progressive agent and a cell-migration inducing agent in BAECs, whereas it was known to act as a tumor suppressor in cancer cells (unpublished data). The inducing effect of Daio-Orengedokuto on cell-cycle progression and cell migration in endothelium suggests that Daio-Orengedokuto may be referred to as a drug, inducing angiogenesis, healing wounds, and (or) remodeling vascular tissue. Then we further investigated which signaling molecules were activated by Daio-Orengedokuto and found that extracellular signal-regulated kinase (ERK) phosphorylation and IkappaB degradation were stimulated by the Daio-Orengedokuto treatment in BAECs. More interestingly, pretreatment with PD compound, an ERK inhibitor, blocked the anti-apoptosis induced by Daio-Orengedokuto. In conclusion, Daio-Orengedokuto plays a role in endothelial cell proliferation via activation of MAP kinase.  相似文献   

4.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

5.
5-Hydroxytryptamine (5-HT) is a vasoactive substance that is taken up by endothelial cells to activate endothelial nitrite oxide synthase (eNOS). The activation of eNOS results in the production of nitric oxide (NO), which is responsible for vasodilation of blood vessels. NO also interacts with superoxide anion (O2*-) to form peroxynitrite (ONOO-), a potent oxidant that has been shown to induce vascular endothelial dysfunction. We examined the ability of 3-morpholinosyndnonimine (SIN-1), an ONOO- generator, to inhibit 5-HT-induced phosphorylation of eNOS in cultured bovine aortic endothelial cells (BAECs). We observed that 5-HT phosphorylates Ser1179 eNOS in a time- and concentration-dependent manner. Maximum phosphorylation occurred at 30 sec using a concentration of 1.0 microM 5-HT. BAECs treated with SIN-1 (1-1000 microM) for 30 min showed no significant increase in eNOS phosphorylation. However, 5-HT-induced eNOS phosphorylation was inhibited in cells treated with various concentrations of SIN-1 for 30 min and stimulated with 5-HT. These data suggest that an increase in ONOO- as a result of an increase in the production of O2*-, may feedback to inhibit 5-HT-induced eNOS phosphorylation at Ser1179 and therefore, contribute to endothelial dysfunction associated with cardiovascular diseases.  相似文献   

6.
The efficient inhibition of angiogenesis is considered as a promising strategy for the treatment of angiogenesis-related diseases including cancer. Herein, we report that embellistatin, a bicyclic ketone compound known as a microtubule polymerization inhibitor, exhibits anti-angiogenic activity. Embellistatin inhibited in vitro angiogenesis of bovine aortic endothelial cells (BAECs) such as bFGF-induced invasion and tube formation as well as bFGF-induced mouse corneal angiogenesis in vivo. Notably, embellistatin exhibited stronger inhibition activity for the growth of BAECs than that of normal and cancer cell lines. Cell cycle analysis revealed that the compound arrests cell cycle at G2/M phase, which is associated with the increased expression of p21(WAF1) and p53 partly. These results demonstrate that embellistatin may serve the basis for the development of new anti-angiogenic agents.  相似文献   

7.
8.
A hitherto unknown function for transglutaminase (TGase; R-glutaminyl- peptide: amine gamma-glutamyltransferase, EC 2.3.2.13) was found in the conversion of latent transforming growth factor-beta (LTGF-beta) to active TGF-beta by bovine aortic endothelial cells (BAECs). The cell- associated, plasmin-mediated activation of LTGF-beta to TGF-beta induced either by treatment of BAECs with retinoids or by cocultures of BAECs and bovine smooth muscle cells (BSMCs) was blocked by seven different inhibitors of TGase as well as a neutralizing antibody to bovine endothelial cell type II TGase. Control experiments indicated that TGase inhibitors and/or a neutralizing antibody to TGase did not interfere with the direct action of TGF-beta, the release of LTGF-beta from cells, or the activation of LTGF-beta by plasmin or by transient acidification. After treatment with retinoids, BAECs expressed increased levels of TGase coordinate with the generation of TGF-beta, whereas BSMCs and bovine embryonic skin fibroblasts, which did not activate LTGF-beta after treatment with retinoids, did not. Furthermore, both TGase inhibitors and a neutralizing antibody to TGase potentiated the effect of retinol in enhancing plasminogen activator (PA) levels in cultures of BAECs by suppressing the TGF-beta-mediated enhancement of PA inhibitor-1 (PAI-1) expression. These results indicate that type II TGase is a component required for cell surface, plasmin-mediated LTGF-beta activation process and that increased expression of TGase accompanies retinoid-induced activation of LTGF- beta.  相似文献   

9.
C Kemal  J E Casida 《Life sciences》1992,50(7):533-540
The CoA esters of diclofop, haloxyfop and fluazifop are up to 425-fold more potent than the corresponding unconjugated herbicides as inhibitors of rat liver acetyl-CoA carboxylase (EC 6.4.1.2); the most potent inhibitor is (R)-fluazifopyl-CoA2 (Ki = 0.03 microM). The binding site is stereoselective for (R)-diclofop, the herbicidally active enantiomer, and for (R)-diclofopyl-CoA. The CoA esters of the antiinflammatory drugs ibuprofen and fenoprofen also strongly inhibit this carboxylase. (S)-Ibuprofenyl-CoA (Ki = 0.7 microM), the CoA ester of the enantiomer with antiinflammatory activity, is 15-fold more potent as an inhibitor than (R)-ibuprofenyl-CoA. These results suggest that some of the biological effects of these herbicides and antiinflammatory drugs in animals may be due to the inhibition of acetyl-CoA carboxylase by their acyl-CoA derivatives.  相似文献   

10.
Chlorpromazine (CP), anamphipathic, antipsychotic agent, causes concave membrane bending inred blood cells with formation of stomatocytic shapes by modulation ofthe phospholipid bilayer. This study was designed to investigate theeffects of CP on the shape of bovine aortic endothelial cells (BAEC)and their membranes in confluent monolayers with phase-contrast andtransmission electron microscopy. Exposure of BAECs tonanomolar levels of CP leads to membrane curvature changes. Withincreasing CP concentrations, the membrane assumed a shape withenhanced numbers of intracellular caveolae and projection ofpseudopodia at all junctions. At higher CP concentrations (up to 150 µM), the endothelial cells assumed almost spherical shapes. Theevidence suggests that CP may affect lipid bilayer bending of BAECs inanalogy with previous observations on erythrocytes, supporting theformation of caveolae and pseudopodia in BAECs due to the induction ofconcave membrane bending, as well as an effect on endothelialcell membrane adhesion at higher CP concentrations withloss of cellular attachment at junctions.

  相似文献   

11.
The purified nickel-containing CO dehydrogenase complex isolated from methanogenic Methanosarcina thermophila grown on acetate is able to catalyze the exchange of [1-14C] acetyl-coenzyme A (CoA) (carbonyl group) with 12CO as well as the exchange of [3'-32P]CoA with acetyl-CoA. Kinetic parameters for the carbonyl exchange have been determined: Km (acetyl-CoA) = 200 microM, Vmax = 15 min-1. CoA is a potent inhibitor of this exchange (Ki = 25 microM) and is formed under the assay conditions because of a slow but detectable acetyl-CoA hydrolase activity of the enzyme. Kinetic parameters for both exchanges are compared with those previously determined for the acetyl-CoA synthase/CO dehydrogenase from the acetogenic Clostridium thermoaceticum. Collectively, these results provide evidence for the postulated role of CO dehydrogenase as the key enzyme for acetyl-CoA degradation in acetotrophic bacteria.  相似文献   

12.
Regulation of pantothenate kinase by coenzyme A and its thioesters   总被引:17,自引:0,他引:17  
Pantothenate kinase catalyzes the rate-controlling step in the coenzyme A (CoA) biosynthetic pathway, and its activity is modulated by the size of the CoA pool. The effect of nonesterified CoA (CoASH) and CoA thioesters on the activity of pantothenate kinase was examined to determine which component of the CoA pool is the most effective regulator of the enzyme from Escherichia coli. CoASH was five times more potent than acetyl-CoA or other CoA thioesters as an inhibitor of pantothenate kinase activity in vitro. Inhibition by CoA thioesters was not due to their hydrolysis to CoASH. CoASH inhibition was competitive with respect to ATP, thus providing a mechanism to coordinate CoA production with the energy state of the cell. There were considerable differences in the size and composition of the CoA pool in cells grown on different carbon sources, and a carbon source shift experiment was used to test the inhibitory effect of the different CoA species in vivo. A shift from glucose to acetate as the carbon source resulted in an increase in the CoASH:acetyl-CoA ratio from 0.7 to 4.3. The alteration in the CoA pool composition was associated with the selective inhibition of pantothenate phosphorylation, consistent with CoASH being a more potent regulator of pantothenate kinase activity in vivo. These results demonstrate that CoA biosynthesis is regulated through feedback inhibition of pantothenate kinase primarily by the concentration of CoASH and secondarily by the size of the CoA thioester pool.  相似文献   

13.
Chen H  Yu QS  Guo ZG 《生理学报》2000,52(1):81-84
用培养的小牛主动脉内皮细胞与兔水洗血小板直接相互作用的模型 ,探讨高密度脂蛋白对内皮衍生的一氧化氮抗血小板聚集作用的影响。培养的小牛主动脉内皮细胞预先用 10 0 μmol/L阿斯匹林处理 ,抑制细胞内的环氧化物酶活性。凝血酶 ( 0 1U/ml)可诱导兔血小板 ( 2× 10 8/ml) 67 3 3± 7 5 2 %的聚集反应。内皮细胞 ( 1× 10 5~ 1× 10 6 /ml)能抑制凝血酶诱导的血小板聚集 ,抑制强度与内皮细胞的数目正相关。且此作用可被 1mmol/L硝基精氨酸完全取消。表明内皮细胞对凝血酶诱导血小板聚集的抑制作用都是由内皮衍生的一氧化氮所致。在加凝血酶之前加入高密度脂蛋白 ( 1mg/ml)可增强内皮细胞 ( 1× 10 5/ml)的这种作用。高密度脂蛋白 ( 1mg/ml)与内皮细胞共同孵育 1h后 ,将高密度脂蛋白离心弃去 ,内皮细胞对凝血酶诱导血小板聚集的抑制作用不受影响。高密度脂蛋白及内皮细胞对静息血小板均无直接作用。结果表明 ,高密度脂蛋白增强内皮细胞抗凝血酶诱导的血小板聚集反应的作用是通过直接作用于内皮衍生的一氧化氮而产生的  相似文献   

14.
Neprilysin (NEP, neutral endopeptidase, EC3.4.24.11), a zinc metallopeptidase expressed on the surface of endothelial cells, influences vascular homeostasis primarily through regulated inactivation of natriuretic peptides and bradykinin. Earlier in vivo studies reporting on the anti-atherosclerotic effects of NEP inhibition and on the atheroprotective effects of flow-associated laminar shear stress (LSS) have lead us to hypothesize that the latter hemodynamic stimulus may serve to down-regulate NEP levels within the vascular endothelium. To address this hypothesis, we have undertaken an investigation of the effects of LSS on NEP expression in vitro in bovine aortic endothelial cells (BAECs), coupled with an examination of the signalling mechanism putatively mediating these effects. BAECs were exposed to physiological levels of LSS (10 dynes/cm2, 24 h) and harvested for analysis of NEP expression using real-time PCR, Western blotting, and immunocytochemistry. Relative to unsheared controls, NEP mRNA and protein were substantially down-regulated by LSS (≥50%), events which could be prevented by treatment of BAECs with either N-acetylcysteine, superoxide dismutase, or catalase, implicating reactive oxygen species (ROS) involvement. Employing pharmacological and molecular inhibition strategies, the signal transduction pathway mediating shear-dependent NEP suppression was also examined, and roles implicated for Gβγ, Rac1, and NADPH oxidase activation in these events. Treatment of static BAECs with angiotensin-II, a potent stimulus for NADPH oxidase activation, mimicked the suppressive effects of shear on NEP expression, further supporting a role for NADPH oxidase-dependent ROS production. Interestingly, inhibition of receptor tyrosine kinase signalling had no effect. In conclusion, we confirm for the first time that NEP expression is down-regulated in vascular endothelial cells by physiological laminar shear, possibly via a mechanotransduction mechanism involving NADPH oxidase-induced ROS production.  相似文献   

15.
To investigate the potential role of tenascin-C (TN-C) on endothelial sprouting we used bovine aortic endothelial cells (BAECs) as an in vitro model of angiogenesis. We found that TN-C is specifically expressed by sprouting and cord-forming BAECs but not by nonsprouting BAECs. To test whether TN-C alone or in combination with basic fibroblast growth factor (bFGF) can enhance endothelial sprouting or cord formation, we used BAECs that normally do not sprout and, fittingly, do not express TN-C. In the presence of bFGF, exogenous TN-C but not fibronectin induced an elongated phenotype in nonsprouting BAECs. This phenotype was due to altered actin cytoskeleton organization. The fibrinogen globe of the TN-C molecule was the active domain promoting the elongated phenotype in response to bFGF. Furthermore, we found that the fibrinogen globe was responsible for reduced cell adhesion of BAECs on TN-C substrates. We conclude that bFGF-stimulated endothelial cells can be switched to a sprouting phenotype by the decreased adhesive strength of TN-C, mediated by the fibrinogen globe.  相似文献   

16.
After birth, a dramatic increase in fatty acid oxidation occurs in the heart, which has been attributed to an increase in l-carnitine levels and a switch from the liver (L) to muscle (M) isoform of carnitine palmitoyltransferase (CPT)-1. However, because M-CPT-1 is more sensitive to inhibition by malonyl CoA, a potent endogenous regulator of fatty acid oxidation, a switch to the M-CPT-1 isoform should theoretically decrease fatty acid oxidation. Because of this discrepancy, we assessed the contributions of myocardial l-carnitine content and CPT-1 isoform expression and kinetics to the maturation of fatty acid oxidation in newborn rabbit hearts. Although fatty acid oxidation rates increased between 1 and 14 days after birth, myocardial l-carnitine concentrations did not increase. Changes in the expression of L-CPT-1 or M-CPT-1 mRNA after birth also did not parallel the increase in fatty acid oxidation. The K(m) of CPT-1 for carnitine and the IC(50) for malonyl CoA remained unchanged between 1 and 10 days after birth. However, malonyl CoA levels dramatically decreased, due in part to an increase in malonyl CoA decarboxylase activity. Our data suggest that a decrease in malonyl CoA control of CPT-1 is primarily responsible for the increase in fatty acid oxidation seen in the newborn heart.  相似文献   

17.
该文探讨了白细胞介素-6(interleukin-6,IL-6)对牛主动脉内皮细胞(bovine aortic endo-thelial cells,BAECs)的内皮型一氧化氮合成酶(endothelial nitric oxide synthase,eNOS)的影响及其可能的发生机制.在原代BAECs细胞培养基础上...  相似文献   

18.
The purpose of this study was to examine whether the adhesion of polymorphonuclear leukocytes (PMNs) to endothelial cells and/or reactive oxygen species (ROS) released from PMNs are responsible for inducing angiogenesis. Angiogenesis was assessed by tube formation using endothelial cells obtained from bovine thoracic aorta (BAECs) grown on a layer of collagen type I. Addition of PMNs to BAECs weakly induced angiogenesis. The angiogenesis induced by PMNs alone was further enhanced by treatment of the PMNs with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a selective activator of PMN. The involvement of PMN adhesion to BAECs via adhesion molecules in angiogenesis was investigated by using monoclonal antibodies against E-selectin and intercellular adhesion molecule-1 (ICAM-1). These antibodies blocked both the PMN adhesion to BAECs and the enhancement of angiogenesis induced by FMLP-treated PMNs. Furthermore, the enhancement of angiogenesis by FMLP-treated PMNs was blocked by catalase, a scavenging enzyme of H2O2, but not by superoxide dismutase (SOD). These results suggest that PMNs induce angiogenesis in vitro, and that the mechanism of stimulation of angiogenesis by PMNs may involve the adherence of PMNs to endothelial cells via E-selectin and ICAM-1, and H2O2, but not superoxide. Thus, activated PMNs in pathological states may not only induce tissue injury, but may also function as regulators of angiogenesis.  相似文献   

19.
Role of autophagy in angiogenesis in aortic endothelial cells   总被引:1,自引:0,他引:1  
Angiogenesis plays critical roles in the recovery phase of ischemic heart disease and peripheral vascular disease. An increase in autophagy is protective under hypoxic and chronic ischemic conditions. In the present study we determined the role of autophagy in angiogenesis. 3-Methyladenine (3-MA) and small interfering RNA (siRNA) against ATG5 were used to inhibit autophagy induced by nutrient deprivation of cultured bovine aortic endothelial cells (BAECs). Assays of BAECs tube formation and cell migration revealed that inhibition of autophagy by 3-MA or siRNA against ATG5 reduced angiogenesis. In contrast, induction of autophagy by overexpression of ATG5 increased BAECs tube formation and migration. Additionally, inhibiting autophagy impaired vascular endothelial growth factor (VEGF)-induced angiogenesis. However, inhibition of autophagy did not alter the expression of pro-angiogenesis factors such as VEGF, platelet-derived growth factor, or integrin αV. Furthermore, autophagy increased reactive oxygen species (ROS) formation and activated AKT phosphorylation. Inhibition of autophagy significantly decreased the production of ROS and activation of AKT but not of extracellular regulated kinase, whereas overexpression of ATG5 increased cellular ROS production and AKT activation in BAECs. Inhibition of AKT activation or ROS production significantly decreased the tube formation induced by ATG5 overexpression. Here we report a novel observation that autophagy plays an important role in angiogenesis in BAECs. Induction of autophagy promotes angiogenesis while inhibition of autophagy suppresses angiogenesis, including VEGF-induced angiogenesis. ROS production and AKT activation might be important mechanisms for mediating angiogenesis induced by autophagy. Our findings indicate that targeting autophagy may provide an important new tool for treating cardiovascular disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号