首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Few wetland restoration projects include long‐term hydrologic and floristic data collection, limiting our understanding of community assembly over restored hydrologic gradients. Although reference sites are commonly used to evaluate outcomes, it remains unclear whether restoring similar water levels to reference sites also leads to similar plant communities. We evaluated long‐term datasets from reference and restored wetlands 15 years after restoration to test whether similar water levels in reference and restored sites led to vegetation similarity. We compared the hydrologic regimes for three different wetland types, tested whether restored wetland water levels were different from reference water levels, and whether hydrologic similarity between reference and restored wetlands led to similarity in plant species composition. We found restored wetlands had similar water levels to references 15 years after restoration, and that species richness was higher in reference than restored wetlands. Vegetation composition was similar across all wetland types and was weakly correlated to wetland water levels overall. Contrary to our hypothesis, water table depth similarity between restored and reference wetlands did not lead to similar plant species composition. Our results highlight the importance of the initial planting following restoration and the importance of hydrologic monitoring. When the restoration goal is to create a specific wetland type, plant community composition may not be a suitable indicator of restoration progress in all wetland types.  相似文献   

2.
Carolina bays are shallow depression wetlands found in the southeastern United States that have been severely altered by human activity. The need to restore these complex and diverse systems is well established, but our limited understanding of wetland hydrologic processes in these systems hinders our ability to assess the effectiveness of bay restoration efforts. Carolina bays exhibit a wide range of moisture regimes from seasonally saturated to semipermanently inundated. Differing physicochemical properties of soils within bay interiors may control bay hydrology. However, previous efforts to establish relationships between soil characteristics and bay hydrology have been inconclusive. An assessment of soil and hydroperiod was initiated in 16 bays designated to be restored and 6 bays that were not restored (reference). Soil morphology was described, and permanent monitoring wells were installed at each site. Multiple regression analysis was used to determine relationships between the soil physicochemical characteristics and the bay hydroperiod for restored and reference bays in both pre‐ and postrestoration periods. A significant relationship (r2= 0.75, p= 0.02) between prerestoration hydroperiod and clay content in the argillic horizon (Bt) of the reference bays was observed. This relationship was then used to evaluate hydroperiod change in the restored bays from the postrestoration period. The relationship accurately identified sites that exhibited high prerestoration hydroperiods and did not need hydrologic restoration (n= 4) and effectively showed sites that exhibited substantial increases in hydroperiod due to the restoration activities (n= 7).  相似文献   

3.
During the symposium Restoration and recovery of shallow lake ecosystems in The Netherlands studies on restoration of eutrophic lakes were addressed and discussed. Many Dutch shallow lakes have received high external loadings of phosphorus through supply water that is influenced by the River Rhine and loadings in The Netherlands. Two important Action Plans (the Rhine Action Plan, the North Sea Action Plan) are now in operation to reduce nutrient emissions. The targets set are not likely to be fully reached, so that supplementary reduction of phosphorus supplied to inland fresh waters will be required. In several shallow lakes such a reduction has been achieved recently, but without leading to discernible recovery. The main causes of delay are phosphorus storage and its subsequent release from sediments and foodweb; however, the remaining extraneous phosphorus supply is often still too high. Supplementary actions are, therefore, called for. A further reduction of phosphorus inputs is suggested, besides supplementary measures proposed, viz. dredging, flushing, biomanipulation, chemomanipulation. Restoration to the past situation via upwelling groundwater appeares to be feasible in some cases. There is a common consensus that each lake behaves differently depending to its morphology, hydrology and history of eutrophication. Therefore each lake has to be studied before restoration measures can be applied. Besides, the ecosystem should not only be studied as a separate entity, but as a part of systems of a higher integration level.  相似文献   

4.
Phosphorus Flow in a Watershed-Lake Ecosystem   总被引:2,自引:0,他引:2  
Cultural eutrophication of lakes caused by excess phosphorus (P) loading from agricultural areas is a persistent and serious environmental problem. We quantified P flows in a watershed-lake ecosystem using a simple mathematical model that coupled in-lake and upland processes to assess and compare the long-term impacts of various management strategies. Our model compares abatement by in-lake strategies (such as increasing the flux of P from algae to consumers and alum application) with riparian management to decrease P flow and with balancing P budgets at the watershed scale. All of these strategies are effective to some extent. However, only reducing the amount of fertilizer P imported to the watershed will decrease the total P in the system at steady state. Soil P—a large reservoir with slow turnover rate—governs long-term flux to the lake and must be decreased in size to maintain long-term control of eutrophication. Received 2 August 1999; accepted 12 April 2000.  相似文献   

5.
The lakes and interconnecting canals in the S.W. Frisian lake district are highly eutrophic. In the mid-1980's a project on eutrophication and lake restoration research was started. This project was aimed at modelling water transport and phosphorus (P) dynamics and at simulating management scenarios. A simple dynamic P-balance model was used to calculate total phosphorus (TP) balances and to simulate three TP reduction scenarios in each of three lakes: Tjeukemeer, Groote Brekken and Slotermeer. The model covered three periods in 1985, 1986 and 1987. The external loads to Tjeukemeer were highest, moderate to Groote Brekken, and lowest to Slotermeer. The major P sources in the area were discharges from the surrounding polders, used mainly for agriculture, and from IJsselmeer.Despite a 75% TP-reduction in water from the surrounding polders the 0.07 mg l–1 target level could be reached only occasionally in Tjeukemeer, while in the other two lakes this level was not even approached. The effect of a 75% reduction in water from IJsselmeer was greatest in Groote Brekken (but again approached the target only occasionally), moderate in Tjeukemeer and least in Slotermeer. The simulations showed that only a 75% reduction in both external loads (from polders and from IJsselmeer) will lead to achieving the target level in Tjeukemeer and Groote Brekken during the summer periods. In Slotermeer, a relatively isolated lake, other measures are necessary to reach the target level. The results are confirmed by an approximate theoretical analysis of the effects of load reduction.  相似文献   

6.
A reduction in external phosphorus loading since 1984 to Loosdrecht lakes system by the dephosphorization of the inlet water, yielded only minor effects in Lake Loosdrecht. This reduction measure turned out to have decreased the loading only by a factor of two. A conceptual model was constructed based on laboratory measurements to describe phosphorus flow in the lake ecosystem for the summer of 1987. The role of zooplankton and fish was more important in phosphorus recycling than diffusion at the sediment-water interface. The input and output of phosphorus of the lake were at equilibrium and therefore, further reduction in external loading was needed for recovery. The results of the conceptual model agreed well with the output of the mathematical model PCLOOS. Additional measures such as dredging, flushing, chemomanipulation, or biomanipulation would be ineffective at the present level of external loading. Only a significant further reduction in external input will restore Lake Loosdrecht's water quality over a long period of time.  相似文献   

7.
The potential importance of the six major emergent and floating-leaved macrophyte species in recycling of sediment phosphorus in the Loosdrecht lakes was studied. Representative plant samples were collected at the time of maximum biomass, and analysed for biomass and carbon, nitrogen and phosphorus contents. Species cover was determined by aerial photography.Total cover in the seven lakes studied ranged between 2 and 26 percent. For the four main species, biomass per unit area increased with lake trophic status. Consistent differences in C, N and P contents per unit biomass were not observed. Although cover values were small, significant amounts of C, N and P were contained in the macrophytes when compared with maximum sestonic content.Potential P loads from macrophyte decay were calculated. In Lake Loosdrecht, the P load represented 15 percent of current external P inputs. The potential importance of macrophyte decay to P recycling in the other lakes is greater.Decay of macrophyte species at the end of the growing season appears to affect autumnal nutrient and chlorophyll a levels in the water column of some lakes. The re-establishment of submerged species following lake restoration may increase the importance of this pathway in the lakes.  相似文献   

8.
Soil organic matter (SOM) content is a key indicator of soil quality and is correlated to a number of important soil processes that occur in wetlands such as respiration, denitrification, and phosphorus sorption. To better understand the differences in the SOM content of created (CW), restored (RW), and paired natural wetlands (NWs), 11 CW/RW-NW pairs were sampled in North Carolina. The site pairs spanned a range of hydrogeomorphic (HGM) subclasses common in the Coastal Plain. The following null hypotheses were tested: (1) SOM content of paired CW/RWs and NWs are similar; (2) SOM content of wetlands across different HGM subclasses is similar; and (3) interactions between wetland status (CW/RW vs. NW) and hydrogeomorphic subclass are similar. The first null hypothesis was rejected as CW/RWs had significantly lower mean SOM (11.8 ± 3.9%) than their paired NWs (28.98 ± 8.0%) on average and at 10 out of the 11 individual sites. The second and third null hypotheses were also rejected as CW/RWs and NWs in the non-riverine organic soil flat subclass had significantly higher mean SOM content (31.08 ± 14.2%) than the other three subclasses (8.18 ± 2.5, 11.18 ± 8.2, and 10.38 ± 4.2%). Individual sites within this fourth subclass also had significantly different SOM content. This indicated that it would be inappropriate to include the organic soil flat subclass with either the riverine or non-riverine mineral soil flat subclasses when considering restoration guidelines. These results also suggested that if there is a choice in mitigation options between restoration or creation, wetlands should be restored rather than created, especially those in the non-riverine organic soil flat subclass.  相似文献   

9.
Total phosphorus and chlorophyll decreased significantly after reduction of the external phosphorus loading and the start of flushing Veluwemeer with polder water in 1979.Flushing of Veluwemeer has had a large impact on nutrient dynamics. Especially in the first winter, dilution was the main cause of changes in water quality. On a longer term the increase of the inactivation of phosphorus in sediments is important. Oscillatoria agardhii has been brought to the margins of its habitat. Three successive cold winters were an additional causal factor in the disappearance of Oscillatoria agardhii and the dominance of diatoms and green algae from 1985 onwards.Due to higher detritus and inorganic suspended matter concentrations transparency increased less than expected. Since 1985 chlorophyll only contributes for a small percentage to the transparency.In the present situation further improvement of the water quality of Veluwemeer is questionable, as the phosphorus concentration in the lake and the polder water is almost the same. Therefore it is recommanded to shift flushing operations, at least in the winter period, from Veluwemeer towards Wolderwijd.  相似文献   

10.
Riparian forest restoration generally involves introduction of later‐successional tree species, but poor species suitability to severely altered or degraded site conditions results in high mortality and poor community development. Additionally, while microtopographic heterogeneity plays a crucial role in the development of natural riparian forests, little is known regarding effects of restored or created microtopography on the development of introduced plant communities. The objective of this study was to determine the influence of created microtopography and soil treatments on early development of introduced pioneer and later‐successional plant communities in riparian forest restoration. Ridges, flats, and a mound‐and‐pool complex were created, and pioneer and later‐successional tree assemblages were planted within plots in each of these three microtopographic positions. Straw‐based erosion control mats were placed on half the plots as a source of mulch. After two growing seasons, growth and survival of the pioneer assemblage were equal among microtopographic positions, but survival of the later‐successional assemblage was significantly higher on ridges (59%) than on mounds and pools (22%) and flats (26%). A suitability index indicated that performance of the later‐successional assemblage on ridges was higher than that of the pioneer assemblage for all microtopographic positions. Flood duration explained much of the variation in plant assemblage survival, and erosion control mats had little influence on seedling survival. Restoring microtopographic features has the potential to enhance species survival and promote community development. Microtopographic restoration may be as important in riparian forest restoration as proper species selection and hydrologic reestablishment, especially at severely disturbed sites.  相似文献   

11.
An ecological functional assessment (EFA) was used on 10 southwest Costa Rica sites representing a chronosequence of formerly pastured lands to undisturbed tropical wet forest. Ecological functional assessment is a tool designed to assess wetland functions in the United States that was adapted to upland forests. Models to indicate characteristic soil hydrologic features and soil structure and aboveground spatial structure of habitat were used to examine the degree to which selected sites within the chronosequence approach the undisturbed condition of the natural forest. An index of the functional model for the maintenance of characteristic soil hydrologic features (such as infiltration, bulk density, etc.) showed that the 20‐year‐old secondary forest was at approximately 60% of the condition of the undisturbed sites, whereas active pasture was evaluated at approximately 20% of the reference undisturbed forest; 4‐ and 10‐year‐old sites were intermediate. The spatial structure of habitat model showed that 20‐year‐old secondary forest was approximately 50% of reference forest, whereas active pasture was approximately 10% of the condition of undisturbed forest; 4‐year‐old sites were evaluated at approximately 20% and 10‐year‐old sites at approximately 60% of the reference state. Overall the functional assessment process indicated that degraded tropical wet forest sites have recovered almost 60% of their functional qualities 10 years following pasture abandonment. These results indicate that EFA can be a useful technique for monitoring restoration programs in the tropics.  相似文献   

12.
In northeastern Illinois, restored wetlands are used to improve water quality in streams degraded by agriculture and urban development. Using freshwater wetlands to reduce nitrogen loading to lakes and rivers is well documented; however, there are fewer studies addressing their use to remove phosphorous. In 1998, a systematic water quality monitoring project was begun at Prairie Wolf Slough Wetland Demonstration Project, a restored palustrine emergent marsh wetland located on an abandoned farm field north of Chicago. The wetland drains 98 ha of mixed land uses into the Chicago River. Our objectives were to assess spatial and temporal variations in total suspended solids, soluble reactive and total phosphorous concentrations, and mass loadings and compute a mass balance and retention efficiency for these constituents. Water sampling was conducted from 1998 to 2003. In 2004, soil samples were collected from the marsh and an adjacent abandoned farm site and analyzed for soil test (Bray) phosphorus. The marsh effectively traps suspended solids but acts as a source of soluble reactive and total phosphorous to the river both during the growing and nongrowing seasons. Net export of phosphorous from the wetland was likely due to mobilization of orthophosphate as a result of anoxic conditions produced during inundation events. Often little consideration is given to the link between soil and water quality when locating restoration sites. Our study adds to a growing body of literature that clearly demonstrates the need for both soil and water quality assessments in wetland restoration planning, design, and monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号