首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P.?aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P.?aeruginosa CF infection.  相似文献   

2.
Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P.?aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances from biofilms formed by mucoid P.?aeruginosa were investigated. Alginate is not an essential structure component for mucoid P.?aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P.?aeruginosa biofilms. The Psl polysaccharide is more important than Pel polysaccharide in mucoid P.?aeruginosa biofilm structure maintenance and phagocytosis resistance. The polysaccharides were further found to protect mucoid P.?aeruginosa strain from host immune clearance in a mouse model of acute lung infection.  相似文献   

3.
The ability of Pseudomonas aeruginosa to form biofilms and cause chronic infections in the lungs of cystic fibrosis patients is well documented. Numerous studies have revealed that P. aeruginosa biofilms are highly refractory to antibiotics. However, dramatically fewer studies have addressed P. aeruginosa biofilm resistance to the host's immune system. In planktonic, unattached (nonbiofilm) P. aeruginosa, the exopolysaccharide alginate provides protection against a variety of host factors yet the role of alginate in protection of biofilm bacteria is unclear. To address this issue, we tested wild-type strains PAO1, PA14, the mucoid cystic fibrosis isolate, FRD1 (mucA22+), and the respective isogenic mutants which lacked the ability to produce alginate, for their susceptibility to human leukocytes in the presence and absence of IFN-gamma. Human leukocytes, in the presence of recombinant human IFN-gamma, killed biofilm bacteria lacking alginate after a 4-h challenge at 37 degrees C. Bacterial killing was dependent on the presence of IFN-gamma. Killing of the alginate-negative biofilm bacteria was mediated through mononuclear cell phagocytosis since treatment with cytochalasin B, which prevents actin polymerization, inhibited leukocyte-specific bacterial killing. By direct microscopic observation, phagocytosis of alginate-negative biofilm bacteria was significantly increased in the presence of IFN-gamma vs all other treatments. Addition of exogenous, purified alginate to the alginate-negative biofilms restored resistance to human leukocyte killing. Our results suggest that although alginate may not play a significant role in bacterial attachment, biofilm development, and formation, it may play an important role in protecting mucoid P. aeruginosa biofilm bacteria from the human immune system.  相似文献   

4.
Mucoid strains of Pseudomonas aeruginosa overproduce the exopolysaccharide alginate, which is substituted with O-acetyl groups. Under non-growing conditions in phosphate buffer, a mucoid clinical strain formed microcolonies on steel surfaces, while an acetylation-defective mutant was unable to form cell clusters. Enzymatic degradation of alginate by alginate lyase prevented microcolony formation of the mucoid parent strain. In a continuous-culture flow-cell system, using gluconate minimal medium, the mucoid strain with acetylated alginate formed microcolonies and grew into heterogenous biofilms, whereas the acetylation-defective mutant produced a thinner and more homogeneous biofilm. A lowered viscosity of extracellular material from the acetylation-defective mutant indicated a weakening of exopolymer interactions by loss of acetyl groups. These results suggest that acetyl substituents are necessary for the function of high-molecular-mass alginate to mediate cell aggregation into microcolonies in the early stages of biofilm development by mucoid P. aeruginosa, thereby determining the architecture of the mature biofilm.  相似文献   

5.
6.
Orgad O  Oren Y  Walker SL  Herzberg M 《Biofouling》2011,27(7):787-798
Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment.  相似文献   

7.
8.
During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments.  相似文献   

9.
目的探讨氨溴索对铜绿假单胞菌临床分离株形成的生物膜(biofilm,BF)主要成分藻酸盐的干预作用,研究其对藻酸盐合成过程中起重要作用的基因表达和合成过程中限速酶活性的影响,以及其对藻酸盐降解的影响。方法建立铜绿似单胞菌临床分离株BF体外模型,培养7d后得到成熟BF。将BF内的细菌振荡下来后,用疏酸-苯酚法检测氨溴索对藻酸盐含量的影响;RT-PCR检测藻酸盐合成过程中重要基因algD、algU、algR和mucA的mRNA表达;分光光度计检测合成过程中限速酶——GDP-甘露糖脱氢酶(guanosine diphospho-D-mannose dehydrogenase,GMD)的活性,并检测藻酸盐的降解情况。结果在氨溴索3.75mg/ml作用下,藻酸盐含量(mg/g)由86.4024±0.8588下降到59.9199±0.5803(F=66.2,P〈0.01);其合成重要基因algD、algU、algR和mucA的mRNA的表达分别由1.2994±0.0173、1.0488±0.0457、0.9888±0.0267和0.8731±0.0336变化为1.0253±0.0265、0.9594±0.0106、0.8536±0.0179和1.0770±0.0503(F=91.9,41.1,88.4和56,9,P均〈0.05);其合成限速酶GMD活性由0.0989±0.0055下降到0.0558±0.0016(F=121.2,P〈0.01);藻酸盐的降解量(△mg/g)由1.4122±0.0073变化为1.4175±0.0019(F=21.81,P〉0.05)。1.875mg/ml氨溴索作用下,有同样的趋势但效应不如高浓度明显。结论氨溴索可以降低铜绿假单胞菌BF藻酸盐的含量,影响藻酸盐合成过程中重要基因algD、algU、algR和mucA的mRNA的表达,降低藻酸盐合成限速酶GMD活性,但对藻酸盐的降解无影响。  相似文献   

10.
Attenuated total reflection/Fourier transform-infrared spectrometry (ATR/FT-IR) and scanning confocal laser microscopy (SCLM) were used to study the role of alginate and alginate structure in the attachment and growth of Pseudomonas aeruginosa on surfaces. Developing biofilms of the mucoid (alginate-producing) cystic fibrosis pulmonary isolate FRD1, as well as mucoid and nonmucoid mutant strains, were monitored by ATR/FT-IR for 44 and 88 h as IR absorbance bands in the region of 2,000 to 1,000 cm(-1). All strains produced biofilms that absorbed IR radiation near 1,650 cm(-1) (amide I), 1,550 cm(-1) (amide II), 1,240 cm(-1) (P==O stretching, C---O---C stretching, and/or amide III vibrations), 1,100 to 1,000 cm(-1) (C---OH and P---O stretching) 1,450 cm(-1), and 1,400 cm(-1). The FRD1 biofilms produced spectra with an increase in relative absorbance at 1,060 cm(-1) (C---OH stretching of alginate) and 1,250 cm(-1) (C---O stretching of the O-acetyl group in alginate), as compared to biofilms of nonmucoid mutant strains. Dehydration of an 88-h FRD1 biofilm revealed other IR bands that were also found in the spectrum of purified FRD1 alginate. These results provide evidence that alginate was present within the FRD1 biofilms and at greater relative concentrations at depths exceeding 1 micrometer, the analysis range for the ATR/FT-IR technique. After 88 h, biofilms of the nonmucoid strains produced amide II absorbances that were six to eight times as intense as those of the mucoid FRD1 parent strain. However, the cell densities in biofilms were similar, suggesting that FRD1 formed biofilms with most cells at depths that exceeded the analysis range of the ATR/FT-IR technique. SCLM analysis confirmed this result, demonstrating that nonmucoid strains formed densely packed biofilms that were generally less than 6 micrometer in depth. In contrast, FRD1 produced microcolonies that were approximately 40 micrometer in depth. An algJ mutant strain that produced alginate lacking O-acetyl groups gave an amide II signal approximately fivefold weaker than that of FRD1 and produced small microcolonies. After 44 h, the algJ mutant switched to the nonmucoid phenotype and formed uniform biofilms, similar to biofilms produced by the nonmucoid strains. These results demonstrate that alginate, although not required for P. aeruginosa biofilm development, plays a role in the biofilm structure and may act as intercellular material, required for formation of thicker three-dimensional biofilms. The results also demonstrate the importance of alginate O acetylation in P. aeruginosa biofilm architecture.  相似文献   

11.
12.
13.
Conversion of the mucoid phenotype, which results from the production of the exopolysaccharide alginate, is a feature typical of Pseudomonas aeruginosa strains causing chronic pulmonary infections in patients with cystic fibrosis. In this study, we further characterized a recombinant plasmid, called pJF15, that contains DNA from the 65- to 70-min region of the chromosome of mucoid P. aeruginosa FRD1 and has loci involved in alginate conversion. Plasmid pJF15 complements algT mutations in trans and confers the mucoid phenotype in cis following gene replacement. However, the phenotype of nonmucoid P. aeruginosa carrying pJF15 is unchanged. Here we report the identification of a locus immediately downstream of algT, called algN, that may be a negative regulator that blocks algT from activating alginate production. Inactivation of algN by transposon Tn501 insertion allowed algT to stimulate alginate production in trans. The DNA sequence of this region identified an open reading frame that predicts an algN gene product of 33 kDa, but no homology was found to other proteins in a sequence data base. Clones of algT in which algN was deleted caused the activation of alginate biosynthesis in transconjugants of several P. aeruginosa strains. DNA containing algT was shown to hybridize to the genomes of several Pseudomonas species, including P. putida, P. stutzeri, and P. fluorescens. Transconjugants of these species carrying algT DNA (with a deletion of algN) from pJF15 showed a mucoid phenotype and increased production of uronic acid-containing polymers that resembled alginate.  相似文献   

14.
The specific activities of phosphomannose isomerase (PMI), phosphomannomutase (PMM), GDP-mannose pyrophosphorylase (GMP), and GDP-mannose dehydrogenase (GMD) were compared in a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa and in two spontaneous nonmucoid revertants. In both revertants some or all of the alginate biosynthetic enzymes we examined appeared to be repressed, indicating that the loss of the mucoid phenotype may be a result of decreased formation of sugar-nucleotide precursors. The introduction and overexpression of the cloned P. aeruginosa phosphomannose isomerase (pmi) gene in both mucoid and nonmucoid strains led not only to the appearance of PMI levels in cell extracts several times higher than those present in the wild-type mucoid strain, but also in higher PMM and GMP specific activities. In extracts of both strains, however, the specific activity of GMD did not change as a result of pmi overexpression. In contrast, the introduction of the cloned Escherichia coli manA (pmi) gene in P. aeruginosa caused an increase in only PMI and PMM activities, having no effect on the level of GMP. This suggests that an increase in PMI activity alone does not induce high GMP activity in P. aeruginosa. The heterologous overexpression of the P. aeruginosa pmi gene in the E. coli manA mutant CD1 led to the appearance in cell extracts of not only PMI activity but also GMP activity, both of which are normally undetectable in extracts of CD1. We discuss the implications of these results and propose a mechanism by which overexpression of the P. aeruginosa pmi gene can cause an elevation in both PMM and GMP activities.  相似文献   

15.
Cystic fibrosis (CF) patients are highly susceptible to chronic pulmonary disease caused by mucoid Pseudomonas aeruginosa strains that overproduce the exopolysaccharide alginate. We showed here that a mutation in zwf, encoding glucose-6-phosphate dehydrogenase (G6PDH), leads to a approximately 90% reduction in alginate production in the mucoid, CF isolate, P. aeruginosa FRD1. The main regulator of alginate, sigma-22 encoded by algT (algU), plays a small but demonstrable role in the induction of zwf expression in P. aeruginosa. However, G6PDH activity and zwf expression were higher in FRD1 strains than in PAO1 strains. In PAO1, zwf expression and G6PDH activity are known to be subject to catabolite repression by succinate. In contrast, FRD1 zwf expression and G6PDH activity were shown to be refractory to such catabolite repression. This was apparently not due to a defect in the catabolite repression control (Crc) protein. Such relaxed control of zwf was found to be common among several examined CF isolates but was not seen in other strains of clinical and environmental origin. Two sets of clonal isolates from individual CF patient indicated that the resident P. aeruginosa strain underwent an adaptive change that deregulated zwf expression. We hypothesized that high-level, unregulated G6PDH activity provided a survival advantage to P. aeruginosa within the lung environment. Interestingly, zwf expression in P. aeruginosa was shown to be required for its resistance to human sputum. This study illustrates that adaptation to the CF pulmonary environment by P. aeruginosa can include altered regulation of basic metabolic activities, including carbon catabolism.  相似文献   

16.
Mucoid strains of Pseudomonas aeruginosa produce a viscous exopolysaccharide called alginate and also express alginate lyase activity which can degrade this polymer. By transposon mutagenesis and gene replacement techniques, the algL gene encoding a P. aeruginosa alginate lyase enzyme was found to reside between algG and algA within the alginate biosynthetic gene cluster at 35 min on the P. aeruginosa chromosome. DNA sequencing data for algL predicted a protein product of ca. 41 kDa, including a 27-amino-acid signal sequence, which would be consistent with its possible localization in the periplasmic space. Expression of the algL gene in Escherichia coli cells resulted in the expression of alginate lyase activity and the appearance of a new protein of ca. 39 kDa detected on sodium dodecyl sulfate-polyacrylamide gels. In mucoid P. aeruginosa strains, expression of algL was regulated by AlgB, which also controls expression of other genes within the alginate gene cluster. Since alginate lyase activity is associated with the ability to produce and secrete alginate polymers, alginate lyase may play a role in alginate production.  相似文献   

17.
18.
Mutant cells of mucoid Pseudomonas aeruginosa isolated from cystic fibrosis patients were examined for their ability to synthesize alginic acid in resting cell suspensions. Unlike the wild-type strain which synthesizes alginic acid from glycerol, fructose, mannitol, glucose, gluconate, glutamate, or succinate, mutants lacking specific enzymes of carbohydrate metabolism are uniquely impaired. A phosphoglucose isomerase mutant did not synthesize the polysaccharide from mannitol, nor did a glucose 6-phosphate dehydrogenase mutant synthesize the polysaccharide from mannitol or glucose. Mutants lacking the Entner-Doudoroff pathway dehydrase or aldolase failed to produce alginate from mannitol, glucose, or gluconate, as a 3-phosphoglycerate kinase or glyceraldehyde 3-phosphate dehydrogenase mutant failed to produce from glutamate or succinate. These results demonstrate the primary role of the Entner-Doudoroff pathway enzymes in the synthesis of alginate from glucose, mannitol, or gluconate and the role of glyceraldehyde 3-phosphate dehydrogenase reaction for the synthesis from gluconeogenic precursors such as glutamate. The virtual absence of any activity of phosphomannose isomerase in cell extracts of several independent mucoid bacteria and the impairment of alginate synthesis from mannitol in mutants lacking phosphoglucose isomerase or glucose 6-phosphate dehydrogenase rule out free mannose 6-phosphate as an intermediate in alginate biosynthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号