首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. S. Glazier 《Oecologia》2000,122(3):335-345
Relationships between body storage (estimated as fat content and residuals of body mass regressed against body length) and offspring investment [brood mass, brood size (number of embryos per brood) and embryo mass] were examined within and among populations of the amphipod Gammarus minus in ten cold springs in central Pennsylvania, USA. Two major hypotheses and six corollary hypotheses were tested. Total reproductive investment (brood mass and brood size) was usually strongly positively correlated with maternal body length and body storage both within and among populations. These positive associations between reproductive and somatic investments are expected if individual variation in resource acquisition exceeds that of resource allocation. That is, individuals or populations that are able to acquire more resources should also be able to allocate more resources to both reproduction and somatic reserves than those acquiring fewer resources. This hypothesis is consistent with evidence showing that individual differences in body storage in G. minus and other amphipods are related to differences in resource acquisition. Positive associations between reproductive and somatic investments do not mean that energy costs of reproduction do not exist in G. minus. Evidence for reproductive energy costs included the lower body-fat contents of brooding versus nonbrooding females and the relatively low body mass per length of females who had just deposited eggs in their brood pouch. Unlike brood mass and brood size, individual embryo mass was usually unrelated to maternal body length and body storage. This pattern is largely consistent with optimal offspring investment theory, which predicts that offspring size should be insensitive to variation in parental resource status. However, in contrast to theory, embryo mass increased in winter when brooding females were significantly ”fatter”, presumably due to the availability of autumn-shed leaf food. This seasonal change in offspring size may be a maternally mediated effect of increased resource availability, though other explanations are possible. Overall, this study suggests that ”fatter” female amphipods are fitter than ”thinner” ones, though both the costs and benefits of increased body storage and brood size require investigation to substantiate this claim. This study also suggests that effects of individual variation in resource acquisition on life-history patterns deserve more theoretical and empirical attention by ecologists than they have received. It should be recognized that positive and/or nonsignificant correlations between life-history traits are just as interesting and important as are the negative correlations predicted by many theoretical models. Received: 20 January 1999 / Accepted: 26 September 1999  相似文献   

2.
In viviparous organisms, pregnant females typically experience an increase in body mass and body volume. In this study, the prediction that variation in reproductive traits among populations of viviparous organisms should be related to variation among populations in body shape was tested in the Pacific molly Poecilia butleri, a viviparous fish that inhabits western Mexico and northern Central America. Variation among 10 populations in four reproductive traits was examined: brood size, individual embryo mass, total reproductive allotment and degree of maternal provisioning of nutrients to developing embryos. Variation among these populations in body shape was also examined. Significant variation among populations was observed in both brood size and reproductive allotment but not in embryo mass or degree of maternal provisioning. Significant variation among populations was also observed in body shape. After correcting for female size, however, reproductive traits and body shape were not associated among populations. This suggests that selective pressures acting on reproduction do not necessarily affect morphology and vice versa. Several factors might contribute to this unexpected lack of association between reproductive traits and morphology.  相似文献   

3.
In ectothermic species, females often produce larger eggs in colder environments. Models based on energetic constraints suggest that this pattern is an adaptation to compensate for the slower growth of offspring in the cold. Yet, females in cold environments also tend to be larger than females in warm environments. Consequently, thermal clines in egg size could be caused by pelvic constraints, which stem from the inability of large eggs to pass through a small pelvic aperture. Models based on energetic constraints and models based on pelvic constraints predict similar relationships between maternal size and egg size. However, pelvic constraints should produce these relationships both within and among populations, whereas energetic constraints would not necessarily do so. If pelvic constraints are important, we might also expect small females to compensate by producing eggs that are relatively rich in lipids (i.e. high energy density). The present study aimed to assess whether energetic or pelvic constraints generate geographical variation in egg size of the lizard Sceloporus undulatus . Pelvic width is very highly correlated with body length in S. undulatus , making maternal size a suitable measure of pelvic constraint. Although maternal size and egg mass (dry and wet) covaried among populations, these variables were generally not related within populations. Energetic density of eggs tended to increase with decreasing egg mass (dry and wet), but this relationship was strongest in populations where no relationship between maternal size and egg mass was observed. Our results do not support the pelvic constraint model and thus indicate energetic constraints play a greater role in generating geographical variation in egg size.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 513–521.  相似文献   

4.
Life history traits (mean and maximum body length of females, number of embryos per brood = brood size, embryo diameter, number of broods per female, lifespan of females) for 302 populations of aquatic gammaridean amphipods, representing 214 species in 16 superfamilies, were reviewed. The variation of these traits, of lifetime potential fecundity (i.e. the number of embryos produced per female lifespan) and of reproductive potential (i.e. the number of embryos produced per female per year), with temperature (latitude), depth, salinity and superfamily, was investigated by various univariate and multivariate methods. Gammaridean amphipods comprise semelparous and iteroparous populations and species, with semiannual, annual, biannual or perennial life cycles. However, most gammarideans studied so far are iteroparous annuals. Body length explains most of the variation in brood size and embryo diameter. The reproductive potential may be increased by increasing body size for a constant breeding frequency, by increasing brood size at the expense of smaller embryos, by increasing breeding frequency for a constant lifespan at the expense of smaller individual broods and/or embryos, and by increasing longevity for a constant breeding frequency and brood size. Combinations of these different options constitute the life history patterns of gammarideans, which vary across superfamilies, latitude and depth, and cannot simply be explained by variations in body length. High latitude species were generally characterized by biannual or perennial life histories, large body size, delayed maturity, and single or few broods with many, relatively large embryos; converse sets of traits characterized low latitude species. Deep-living species had relatively smaller broods and embryos than their shallow-living relatives, yet did not produce more broods. However, different superfamilies dominated in different habitats. The importance of natural selection relative to phylogenetic (historical) and physiological constraints in the forging of these patterns is discussed.  相似文献   

5.
Råberg L  Stjernman M  Nilsson JA 《Oecologia》2005,145(3):496-503
In birds and mammals with sexual size dimorphism (SSD), the larger sex is typically more sensitive to adverse environmental conditions, such as food shortage, during ontogeny. However, some recent studies of altricial birds have found that the larger sex is less sensitive, apparently because large size renders an advantage in sibling competition. Still, this effect is not an inevitable outcome of sibling competition, because several studies of other species of altricial birds have found the traditional pattern. We investigated if the sexes differ in environmental sensitivity during ontogeny in the blue tit, a small altricial bird with c. 6% SSD in body mass (males larger than females). We performed a cross-fostering and brood size manipulation experiment during 2 years to investigate if the sexes were differently affected as regards body size (body mass, tarsus and wing length on day 14 after hatching) and pre-fledging survival. We also investigated if the relationship between body size and post-fledging survival differed between the sexes. Pre-fledging mortality was higher in enlarged than in reduced broods, representing poor and good environments, respectively, but the brood size manipulation did not affect the mortality rate of males and females differently. In both years, both males and females were smaller on day 14 after hatching in enlarged as compared to reduced broods. In one of the years, we also found significant Sex × Experiment interactions for body size, such that females were more affected by poor environmental conditions than that of males. Body size was positively correlated with post-fledging survival, but we found no interactive effects of sex and morphological traits on survival. We conclude that in the blue tit, females (the smaller sex) are more sensitive to adverse environmental conditions which, in our study, was manifest in terms of fledgling size. A review of published studies of sex differences in environmental sensitivity in sexually size-dimorphic altricial birds suggests that the smaller sex is more sensitive than the larger sex in species with large brood size and vice versa.  相似文献   

6.
测定处于不同纬度的浙江杭州和福建宁德的蓝尾石龙子(Eumeceselegans)种群的个体大小和繁殖特征。宁德种群的产卵时间为5月27日—6月22日,早于高纬度杭州种群(6月4日—7月12日)。宁德种群最小繁殖雌体及性成熟个体大小均显著小于杭州种群。宁德和杭州两种群的相对窝卵重无显著差异;当统计去除母体体长的影响之后,两地种群的窝卵数和窝卵重也无显著差异,但杭州种群的卵重量显著大于宁德种群。蓝尾石龙子窝卵数和卵重量呈负相关,窝卵数和卵大小的权衡存在种群间差异。特定窝卵数条件下,杭州种群的卵重量显著大于宁德种群。由此可见,蓝尾石龙子种群间的繁殖生活史特征存在显著差异,而且与母体大小的差异密切相关。推测不同纬度地区的蓝尾石龙子种群的繁殖策略存在差异。  相似文献   

7.
In many bird species, females undergo a marked decline in body condition during the first days of the nestling period. This decline may be because brooding young chicks reduces the time available for foraging. Alternatively, it might be viewed as an adaptive way to reduce flight costs when the food demand of the brood is highest. To test these hypotheses we modified the brooding commitment of House Sparrows Passer domesticus by manipulating brood size to see if changes in time spent brooding affects adult body condition. During the nestling period, females provided on average three times as much brooding as males. Reduced broods received 14% more brooding than large broods and time spent brooding declined with brood size and chick age according to an exponential decay function. Male body condition was unaffected by brood size and remained stable throughout the reproductive period. Body condition of females with enlarged broods decreased gradually during the nestling period, whereas that of females tending reduced broods dropped abruptly and significantly upon hatching. This resulted in females with reduced broods having lower body condition during the first half of the nestling period than those with enlarged broods. The sharp drop in body condition of females with reduced broods coincided with the period that brooding was most intensive. Indeed, female body condition at the end of the nestling period was negatively correlated with the proportion of time they spent brooding during the first half of the nestling period. Thus, the probable lower homeothermic capacities of reduced broods implies a higher brooding commitment for female House Sparrows that, in turn, may reduce their opportunity to forage and consequently also their body condition.  相似文献   

8.
We collected gravid Chinese cobras (Naja atra) from one island (Dinghai) and three mainland (Yiwu, Lishui and Quanzhou) populations in south‐eastern China to study geographical variation in female reproductive traits and the trade‐off between the size and number of eggs. We then conducted an common experiment on cobras from two of the four populations to further identify factors contributing to the observed trade‐offs. The mean size (snout–vent length) of the smallest five reproductive females increased with increasing latitude. Oviposition occurred between late June and early August, with females from the warmer localities laying eggs earlier than those from the colder localities. Maternal size was a major determinant of the reproductive investment in all populations, with larger females producing not only more but also larger eggs. Clutch size was more variable than egg size within and among populations. The observed geographical variation in clutch size, egg size, clutch mass and post‐oviposition body condition was not a simple consequence of variation in maternal size among populations, because interpopulation differences in these traits were still evident when the influence of maternal size was removed. The upper limit to reproductive investment was more likely to be set by the space availability in the island population, but by the resource availability in the three mainland populations. Trade‐offs between size and number of eggs were detected in all populations, with females that had larger clutches for their size having smaller eggs. Egg size at any given level of relative fecundity differed among populations, primarily because of interpopulation differences in the resource availability rather than the space availability. Except for the timing date of oviposition and the mean size of the smallest five reproductive females, all other examined traits did not vary in a geographically continuous trend. The common garden experiment, which standardized environmental factors, synchronized the timing date of oviposition, but it did not modify the conclusion drawn from the gravid females collected from the field. The observed geographical variation in the female reproductive traits could be attributed to the consequence of the effects of either proximate or ultimate factors. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 27–40.  相似文献   

9.
Theory predicts that organisms living in heterogeneous environmentswill exhibit phenotypic plasticity. One trait that may be particularlyimportant in this context is the clutch or brood size becauseit is simultaneously a maternal and offspring characteristic.In this paper, I test the hypothesis that the burying beetle,Nicrophorus orbicollis, adjusts brood size, in part, in anticipationof the reproductive environment of its adult offspring. N. orbicollisuse a small vertebrate carcass as a food resource for theiryoung. Both parents provide parental care and actively regulatebrood size through filial cannibalism. The result is a positivecorrelation between brood size and carcass size. Adult bodysize is an important determinant of reproductive success forboth sexes, but only at higher population densities. I testthree predictions generated by the hypothesis that beetles adjustbrood size in response to population density. First, averageadult body size should vary positively with population density.Second, brood size on a given-sized carcass should be larger(producing more but smaller young) in low-density populationsthan in high-density populations. Third, females should respondadaptively to changes in local population density by producinglarger broods when population density is low and small broodswhen population density is high. All three predictions weresupported using a combination of field and laboratory experiments.These results (1) show that brood size is a phenotypically plastictrait and (2) support the idea that brood size decisions arean intergenerational phenomenon that varies with the anticipatedcompetitive environment of the offspring.  相似文献   

10.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

11.
John W. Rowe 《Oecologia》1994,99(1-2):35-44
Interpopulation variation in egg size, clutch size and clutch mass was studied 3 years in four populations of painted turtles (Chrysemys picta bellii) from western Nebraska. Body size varied among all populations and was larger in two large (56–110 ha), sandhills lake populations than in two populations in smaller habitats (1.5–3.6 ha) of the Platte River floodplain. Reproductive parameters (egg mass, clutch mass, and clutch size) generally increased with maternal body size within populations. Clutch wet and dry mass varied among populations but largely as a function of maternal body size. Clutch size was largest in the sandhills lake populations, both absolutely and relative to maternal body size. Egg mass was smallest in the sandhills lakes and varied annually in one population. Over all populations, an egg sizeclutch size trade-off was detected (a negative correlation between egg mass and clutch size) after statistically removing maternal body size effects. Egg wet mass and clutch size were negatively correlated over all years within the sandhills populations and in some years in three populations. Although egg size varied within populations, egg size and clutch size covaried as expected by optimal offspring size models. Thus, patterns of egg size variation should be interpreted in the context of proximate or adaptive maternal body size and temporal effects. Comparisons among populations suggest that large egg size relative to maternal body size may occur when juvenile growth potential is poor and mean maternal body size is small.  相似文献   

12.
In most animal species, brood size and body size exhibit some variation within and between populations. This is also true for burying beetles (genus Nicrophorus), a group in which the body size of offspring depends critically on the number of offspring competing for food due to the discrete nature of resource used for larval nutrition (vertebrate carcasses). In one species, brood size and body size are correlated with population density, and appear to be phenotypically plastic. We investigated potential proximate causes of between-population variation in brood size and body size in two species, Nicrophorus vespilloides and Nicrophorus defodiens. Our first experiment supported the notion that brood size is phenotypically plastic, because it was affected by environmental variation in adult nutritional condition. We found that the pre-breeding nutritional status of female N. vespilloides affected the number of eggs they laid, the number of surviving larvae in their broods, and the body size of their offspring. We do not know whether this plasticity is adaptive because greater offspring body size confers an advantage in contests over breeding resources, or whether starved females are constrained to produce smaller clutches because they cannot fully compensate for their poor pre-breeding nutritional status by feeding from the carcass. Our second experiment documents that brood size, specifically the infanticidal brood-size adjustment behavior, has undergone genetic differentiation between two populations of N. defodiens. Even under identical breeding conditions with identical numbers of first-instar larvae, females descended from the two populations produced broods of different size with corresponding differences in offspring body size.  相似文献   

13.
1. A survey of thirty-two rheocrene springs in central Pennsylvania revealed that, Like Gammarus in lakes and streams, Gammarus minus is absent from springs with pH <6.0 and conductivity <25μS cm?1 (total range in pH = 4.6–7.7, and in conductivity = 14–411 μS cm?1). 2. In ten springs G. minus density was positively correlated with Ca2+ and Mg2+ hardness, but not with pH, unless three springs with either an exceptionally high velocity or extremely high densities of the potentially competing snail Fontigens nickliniana were omitted. 3. Adults were larger in the springs with few or no large predators than in those with more predators. In all ten springs, adult dry mass was unrelated to spring pH and ionic content, but brooding female dry mass covaried positively with Ca2+ and Mg2+ hardness in the five predator-poor springs. 4. Body water, Na and Ca contents and body mass/length ratios varied independently of spring pH and ionic content. Water content was inversely correlated with fat content, but even when expressed as a percentage of fat-free wet mass, it was unrelated to water chemistry. 5. In juveniles, males and non-brooding females, fat content varied independently of spring pH and ionic content, but in brooding females it was correlated with alkalinity and Ca2+ and Mg2+ hardness. The cost of reproduction in brooding females may have been a factor here; they had significantly lower per cent fat than did non-brooding females. Juvenile fat content did not differ significantly among spring populations, whereas adult fat content did. The per cent fat of brooding females covaried positively with body size among springs, and this was marginally true for non-brooding females, as well. The residuals of brooding female per cent fat against dry mass were not related to water chemistry. 6. Brood size (number of embryos in a brood) and brood mass varied significantly among populations, but independently of spring pH and ionic content. Both covaried positively with maternal body size among springs. The residuals of these relationships were unrelated to water chemistry, as was the percentage of females brooding. 7. G. minus from a pH 6 spring survived better and lost less body mass in acidic soft water than did those from a pH 7.6 spring. However, although G. minus has apparently been able to adapt (or acclimate) to pH 6 water it has failed to adapt to more acidic waters. A physiological or structural constraint may be involved because this species has probably had ample opportunity to evolve resistance to dilute acidic water. This hypothesis is consistent with the threshold effect observed: above pH 6 G. minus shows very little evidence of osmotic or metabolic stress, but beiow pH 6 viable populations apparently cannot survive at all. However, the gradual linear decrease in population density of G. minus with decreasing alkalinity and Ca2+ and Mg2+ hardness suggests that other factors may also be involved (e.g. a decrease in food quality).  相似文献   

14.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

15.
Maternal investment in offspring size and number differed between spring- and summer-emerging individual females of Megachile apicalis, a solitary multivoltine bee. Data from experimentally initiated female populations indicated that spring-emerging females produced a relatively large number of progeny but allocated a small amount of food to each, resulting in small progeny. Adult females of larger body sizes provisioned food at a greater rate than did smaller females, and this body-size effect was significant in spring-emerging females. The large body size of these females allowed them to increase the number of progeny produced under the abundant floral resources that occurred during the spring. Conversely, summer-emerging females produced fewer progeny under the diminishing resources for brood production, but allocated each with more food, producing larger progeny, most of which emerged in the spring of the following year. Field data using trap-nests also indicated the same pattern of seasonal offspring size allocation found in the experimental populations. This maternal investment strategy entails a trade-off between the size and number of progeny, so that the daughters upon emergence can best perform in their brood production under the seasonally variable environments where they reproduce.  相似文献   

16.
A brood manipulation experiment on great tits Parus major was performedto study the effects of nestling age and brood size on parentalcare and offspring survival. Daily energy expenditure (DEE)of females feeding nestlings of 6 and 12 days of age was measuredusing the doubly-labeled water technique. Females adjusted theirbrooding behavior to the age of the young. The data are consistentwith the idea that brooding behavior was determined primarilyby the thermoregulatory requirements of the brood. Female DEEdid not differ with nestling age; when differences in body masswere controlled for, it was lower during the brooding periodthan later. In enlarged broods, both parents showed significantlyhigher rates of food provisioning to the brood. Female DEE wasaffected by brood size manipulation, and it did not level offwith brood size. There was no significant effect of nestlingage on the relation between DEE and manipulation. Birds wereable to raise a larger brood than the natural brood size, althoughlarger broods suffered from increased nestling mortality ratesduring the peak demand period of the nestlings. Offspring conditionat fledging was negatively affected by brood size manipulation,but recruitment rate per brood was positively related to broodsize, suggesting that the optimal brood size exceeds the naturalbrood size in this population.  相似文献   

17.
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy.  相似文献   

18.
The soft coral genus Alcyonium is among the most reproductively diverse invertebrate taxa known: The genus includes species that vary both in mode of reproduction (including broadcast spawners, internal brooders, and external brooders) and sexual expression (gonochores, hermaphrodites, and a unisexual parthenogen). Such diversity offers a unique opportunity to examine associations between reproductive and morphological traits in a phylogenetic context. We used an approximately 900-bp sequence of the nuclear ribosomal gene complex spanning the internal transcribed spacer (ITS) regions to construct a molecular phylogeny for 14 European and North American species of Alcyonium onto which we mapped the known distribution of reproductive and morphological traits. The phylogeny suggests that hermaphroditism or parthenogenesis has evolved independently at least twice in this genus, and always in internally brooding species. Broadcast spawning and external brooding only occur in species with large colony size, whereas all species with small colony size brood their larvae internally. Internal brooding and small size appear to be ancestral in this genus; if this is the case, an association between broadcast spawning and large colony size has evolved independently in at least two clades. This tendency of small adults to brood their larvae while large adults broadcast spawn them into the plankton has been observed in a variety of solitary invertebrate taxa, but to date has not been documented in any other colonial invertebrates. Moreoever, it has been suggested that organisms with a colonial growth form should not experience the allometric constraints on brood space that have been proposed to explain the association between adult size and mode of reproduction in solitary organisms. Unlike many other colonial groups, however, module (polyp) size is strongly correlated with colony size in Alcyonium, and constraints on brooding may be imposed by module, rather than colony, allometry. The very close genetic relationship (< 1% sequence divergence) and shared polymorphisms among A. digitatum (a large, gonochoric broadcast spawner), A. siderium, and A. sp. A (intermediate-sized and small hermaphroditic, internal brooders) suggest that evolutionary transitions between broadcast spawning and brooding and between gonochorism and hermaphroditism can occur easily and rapidly in this group.  相似文献   

19.
《Animal behaviour》1995,50(5):1309-1316
Three nesting behaviour patterns are documented in the plethodontid salamander Hemidactylium scutatum. A female may lay eggs (1) in a solitary nest and brood them, (2) in a joint nest and brood them as well as eggs of other females, or (3) in a joint nest that is brooded by another female. The hypothesis that population density was positively associated with joint nesting was tested by following two populations for 5 years and by experimentally manipulating the population density of nesting females in artificial habitats for the latter 2 years. The proportion of joint nests did not vary with density, although joint nests tended to contain eggs of more females at the high population density. Joint nests were usually brooded by one female; thus, most females that laid eggs in joint nests did not brood them at high density. The reproductive success, as measured by survival of embryos, of solitary and joint nesters was equivalent. Joint nests were deserted less often, however, which decreased the probability of catastrophic mortality. The number of days of brooding was significantly positively correlated with loss of body mass of females, suggesting a cost to brooding behaviour. Joint nesting with solitary brooding is not explained by aggressive usurpation of nests or by brood parasitism.  相似文献   

20.
While chance events, oceanography and selective pressures inject stochasticity into the replenishment of marine populations with dispersing life stages, some determinism may arise as a result of characteristics of breeding individuals. It is well known that larger females have higher fecundity, and recent laboratory studies have shown that maternal traits such as age and size can be positively associated with offspring growth, size and survival. Whether such fecundity and maternal effects translate into higher recruitment in marine populations remains largely unanswered. We studied a population of Amphiprion chrysopterus (orange-fin anemonefish) in Moorea, French Polynesia, to test whether maternal size influenced the degree of self-recruitment on the island through body size-fecundity and/or additional size-related maternal effects of offspring. We non-lethally sampled 378 adult and young juveniles at Moorea, and, through parentage analysis, identified the mothers of 27 self-recruits (SRs) out of 101 recruits sampled. We also identified the sites occupied by each mother of an SR and, taking into account variation in maternal size among sites, we found that females that produced SRs were significantly larger than those that did not (approx. 7% greater total length, approx. 20% greater biomass). Our analyses further reveal that the contribution of larger females to self-recruitment was significantly greater than expected on the basis of the relationship between body size and fecundity, indicating that there were important maternal effects of female size on traits of their offspring. These results show, for the first time in a natural population, that larger female fish contribute more to local replenishment (self-recruitment) and, more importantly, that size-specific fecundity alone could not explain the disparity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号