首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to investigate the expression of Twist in gastric cancer tissues and its correlation between Twist and the epithelial-mesenchymal transition (EMT). By means of RT-PCR and Western blot, the mRNA and protein expressions of Twist, E-cadherin, and Vimentin in 61 gastric cancer tissues and adjacent normal tissues were detected. The positive rates of Twist, E-cadherin, and Vimentin mRNA expression in gastric cancer tissues were 73.9. 40.6, and 60.9 %, respectively; compared to the expression of these genes in adjacent normal tissues (2.9, 75.4, and 27.5 %), the differences were significant (p < 0.05). The E-cadherin protein expression level in gastric cancer tissues was significantly lower than that in the adjacent normal tissues (p < 0.05). After the transfection of Twist siRNA into the MKN45 cells, the protein expression of Twist was significantly reduced (p < 0.05), the protein expression of E-cadherin was significantly increased, and the number of cells that passed through the Transwell chamber was significantly lower than that in the non-transfected control group as well as the transfected control group (p < 0.05). Twist may be associated with the epithelial-mesenchymal transition in gastric cancer and the tumorigenesis, invasion, and metastasis of gastric cancer.  相似文献   

2.
目的:探讨二氢杨梅素(DHM )对人胃癌MKN45细胞迁移和侵袭的作用及其分子机制。方法:培养人低分化胃癌MKN45细胞,用不同浓度的DHM(0,10,20,30,40,50 μmol/L)分别处理细胞24及48 h,每组实验重复3次,采用CCK8实验检测癌细胞增殖活力;划痕实验检测细胞迁移能力;Transwell小室检测细胞侵袭能力;免疫印迹分析细胞迁移和侵袭相关蛋白表达情况。结果:不同浓度DHM干预可降低MKN45细胞活力。20,30及40 μmol/L的DHM处理48 h可明显抑制细胞的迁移能力(P<0.01)和侵袭能力(P<0.05及0.01)。20及30 μmol/L的DHM处理48 h可增加E-cadherin蛋白表达(P<0.01)、降低Vimentin表达(P<0.01),从而逆转EMT过程;10,20及30 μmol/L的DHM处理48 h可明显降低pJNK的活性表达水平(P<0.05及0.01),及MMP-2蛋白表达(P< 0.01);JNK通路特异性抑制剂SP600125预处理可明显促进DHM对癌细胞侵袭能力的抑制作用(P<0.01)及降低MMP-2表达(P<0.01)。结论:DHM具有抑制人胃癌MKN45细胞的迁移及侵袭的作用,其机制可能与通过JNK通路下调MMP-2蛋白表达水平、逆转上皮间质转化有关。  相似文献   

3.
目的观察转化生长因子-β1(TGF-β1)对人胃癌细胞株AGS发生上皮-间充质转化(epithelial-mesenchymal transition,EMT)及体外侵袭的影响。方法将体外培养的AGS用TGF-β1干预后,倒置显微镜下观察细胞形态学的变化,MTT比色法检测TGF-β1对AGS增殖的影响,细胞划痕试验和Transwell侵袭试验检测细胞运动和侵袭力的改变;免疫荧光和Western blot检测snail、E-cadherin(上皮钙粘蛋白)、和N-cadherin(神经钙粘蛋白)表达的变化。结果TGF-β1诱导AGS向间充质细胞形态转化,低浓度促进细胞增殖,而高浓度时细胞增殖率逐步降低,且snail和间充质细胞表型N-cadherin表达上调,而上皮细胞表型E-cadherin表达下调,同时细胞运动和侵袭能力大大增强。结论TGF-β1可诱导AGS发生EMT,从而增加其侵袭、转移的能力。  相似文献   

4.
5.
Calcium-dependent cell adhesion molecules (cadherins) are involved in maintaining the epithelial structure of a number of tissues including the mammary gland. In breast and other tumor types, loss of E-cadherin expression has been seen in high grade tumors and correlates with increased invasiveness. Here we show high levels of expression of N-cadherin in the most invasive breast cancer cell lines which was inversely correlated with their expression of E-cadherin. A stromal cell line also expressed N-cadherin in accordance with its fibroblastic morphology. N-cadherin localized to areas of cell-cell contact in all cells that expressed it. Calcium-dependent intercellular adhesion of N-cadherin-expressing breast cancer and stromal cells was specifically inhibited by an anti N-cadherin monoclonal antibody. In addition, N-cadherin promoted the interaction of invasive breast cancer cells with mammary stromal cells: in contrast, E-cadherin expressing cell lines did not co-aggregate with stromal cells. The combined results suggest a functional role for N-cadherin in cohesion of breast tumor cells which, in addition promotes their interaction with the surrounding stromal cells, thereby facilitating invasion and metastasis.  相似文献   

6.
Aberrant expression of Liver X receptor α (LXRα) has been frequently reported in various types of cancers excluding gastric cancer (GC). Moreover, the role of LXRα in human GC has not been previously reported. In this study, we investigated the effect of LXRα down-regulation on invasion and EMT of GC. The expression of LXRα in GC cell lines was detected by real-time PCR. The LXRα siRNA was transiently transfected into GC cells using Lipofectamine? 2000 reagent. Subsequently, cell invasive ability was evaluated by Transwell assays. Western blot and real-time PCR were used to determined the expressions of matrix metalloproteinase-2 and -9 (MMP-2 and -9), E-cadherin, N-cadherin, Vimentin, Snail, Slug, and Twist in GC cells. In addition, the effect of LXRα down-regulation on the phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was explored by Western blot. From our results, we found that the expression of LXRα was significantly increased in GC tissues and cell lines. Knockdown of LXRα suppressed the invasive ability of GC cells. The levels of MMP-2 and -9 were dramatically decreased by down-regulating LXRα. In addition, we found a decrease of N-cadherin, Twist, and Slug expressions and an increase of E-cadherin expression, but no influence on the expression levels of Vimentin and Snail. We also found that LXRα down-regulation might suppress the phosphorylation of Akt, NF-κB, and IκB. Collectively, our results indicated that down-regulation of LXRα was shown to suppress invasion and EMT of GC cells by decreasing the expressions of related proteins through inhibiting the PI3K/Akt/NF-κB signaling pathway.  相似文献   

7.
Calcium-dependent cell adhesion molecules (cadherins) are involved in maintaining the epithelial structure of a number of tissues including the mammary gland. In breast and other tumor types, loss of E-cadherin expression has been seen in high grade tumors and correlates with increased invasiveness. Here we show high levels of expression of N-cadherin in the most invasive breast cancer cell lines which was inversely correlated with their expression of E-cadherin. A stromal cell line also expressed N-cadherin in accordance with its fibroblastic morphology. N-cadherin localized to areas of cell-cell contact in all cells that expressed it. Calcium-dependent intercellular adhesion of N-cadherin-expressing breast cancer and stromal cells was specifically inhibited by an anti N-cadherin monoclonal antibody. In addition, N-cadherin promoted the interaction of invasive breast cancer cells with mammary stromal cells: in contrast, E-cadherin expressing cell lines did not co-aggregate with stromal cells. The combined results suggest a functional role for N-cadherin in cohesion of breast tumor cells which, in addition promotes their interaction with the surrounding stromal cells, thereby facilitating invasion and metastasis.  相似文献   

8.
9.
10.
11.
Tachykinins such as SP (substance P) may be involved in the progression of gastric adenocarcinoma through binding to NK-1 receptor. However, the existence and relationship between SP and gastric cancer progression and differentiation remained unknown. We have studied the NK-1 receptor in human gastric cancer tissue and MKN45 cell line and found SP-containing nerve fibres in human gastric cancer and found that the amounts of SP-positive nerves were related to gastric cancer differentiation. SP could promote proliferation, adhesion, migration and invasion of MKN45 cells in vitro. In addition, the intracellular calcium level of MKN45 cells was elevated after SP stimulation, and administration of CRACs (calcium release-activated calcium channels) inhibitor SKF-96365 could partially abolish these effects induced by SP. These results demonstrated that NK-1 receptor and SP-containing nerves existed in human gastric cancer; SP positive nerves may play an important role in human gastric cancer progression, and calcium is critically significant among SP-induced biological effects.  相似文献   

12.
13.
Expression of basic fibroblast growth factor in human gastric carcinomas.   总被引:3,自引:0,他引:3  
The expression of mRNA for the basic fibroblast growth factor (FGF) gene was examined in seven human gastric carcinoma cell lines and in tissue from 29 gastric carcinomas together with the adjacent normal mucosa. Among the seven gastric carcinoma cell lines, the MKN45 cell line expressed mRNA for the basic FGF gene. Basic FGF protein production was confirmed by flow cytometric analysis and immunohistochemistry. Among the surgical specimens, 16 (55%) of 29 gastric carcinomas showed higher levels of basic FGF mRNA than the normal mucosa. Interestingly, in scirrhous gastric carcinomas characterized by their fibrous stroma and rapid growth, 9 (69%) of 13, samples examined revealed higher levels of basic FGF mRNA than normal mucosa, whereas only 3 (33%) of the 9 well differentiated adenocarcinomas studied produced similar results. Immunohistochemically, basic FGF protein was localized in tumor cells. These results suggest that basic FGF produced by tumor cells may play an important role in producing fibrosis and angiogenesis in gastric carcinomas.  相似文献   

14.
The expression of mRNA for the basic fibroblast growth factor (FGF) gene was examined in seven human gastric carcinoma cell lines and in tissue from 29 gastric carcinomas together with the adjacent normal mucosa. Among the seven gastric carcinoma cell lines, the MKN45 cell line expressed mRNA for the basic FGF gene. Basic FGF protein production was confirmed by flow cytometric analysis and immunohistochemistry. Among the surgical specimens, 16 (55%) of 29 gastric carcinomas showed higher levels of basic FGF mRNA than the normal mucosa. Interestingly, in scirr-hous gastric carcinomas characterized by their fibrous stroma and rapid growth, 9 (69%) of 13, samples examined revealed higher levels of basic FGF mRNA than normal mucosa, whereas only 3 (33%) of the 9 well differentiated adenocarcinomas studied produced similar results. Immunohistochemically, basic FGF protein was localized in tumor cells. These results suggest that basic FGF produced by tumor cells may play an important role in producing fibrosis and angiogenesis in gastric carcinomas.  相似文献   

15.
16.
《The Journal of cell biology》1996,135(6):1643-1654
E-cadherin is a transmembrane glycoprotein that mediates calcium- dependent, homotypic cell-cell adhesion and plays an important role in maintaining the normal phenotype of epithelial cells. Disruption of E- cadherin activity in epithelial cells correlates with formation of metastatic tumors. Decreased adhesive function may be implemented in a number of ways including: (a) decreased expression of E-cadherin; (b) mutations in the gene encoding E-cadherin; or (c) mutations in the genes that encode the catenins, proteins that link the cadherins to the cytoskeleton and are essential for cadherin mediated cell-cell adhesion. In this study, we explored the possibility that inappropriate expression of a nonepithelial cadherin by an epithelial cell might also result in disruption of cell-cell adhesion. We showed that a squamous cell carcinoma-derived cell line expressed N-cadherin and displayed a scattered fibroblastic phenotype along with decreased expression of E- and P-cadherin. Transfection of this cell line with antisense N- cadherin resulted in reversion to a normal-appearing squamous epithelial cell with increased E- and P-cadherin expression. In addition, transfection of a normal-appearing squamous epithelial cell line with N-cadherin resulted in downregulation of both E- and P- cadherin and a scattered fibroblastic phenotype. In all cases, the levels of expression of N-cadherin and E-cadherin were inversely related to one another. In addition, we showed that some squamous cell carcinomas expressed N-cadherin in situ and those tumors expressing N- cadherin were invasive. These studies led us to propose a novel mechanism for tumorigenesis in squamous epithelial cells; i.e., inadvertent expression of a nonepithelial cadherin.  相似文献   

17.
EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.  相似文献   

18.
The cadherin switch from E-cadherin to N-cadherin is considered as a hallmark of the epithelial-mesenchymal transition and progression of carcinomas. Although it enhances aggressive behaviors of adenocarcinoma cells, the significance and role of cadherin switch in squamous cell carcinomas (SCCs) are largely controversial. In the present study, we immunohistochemically examined expression of E-cadherin and N-cadherin in oral SCCs (n = 63) and its implications for the disease progression. The E-cadherin-positive carcinoma cells were rapidly decreased at the invasive front. The percentage of carcinoma cells stained E-cadherin at the cell membrane was reduced in parallel with tumor dedifferentiation (P<0.01) and enhanced invasion (P<0.01). In contrast, N-cadherin-positive cells were very limited and did not correlate with the clinicopathological parameters. Mouse tongue tumors xenotransplantated oral SCC cell lines expressing both cadherins in vitro reproduced the reduction of E-cadherin-positive carcinoma cells at the invasive front and the negligible expression of N-cadherin. These results demonstrate that the reduction of E-cadherin-mediated carcinoma cell-cell adhesion at the invasive front, but not the cadherin switch, is an important determinant for oral SCC progression, and suggest that the environments surrounding carcinoma cells largely affect the cadherin expression.  相似文献   

19.
E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell-cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin-mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findings have raised the possibility that N-cadherin contributes to the invasive phenotype. To determine whether N-cadherin promotes invasion and metastasis, we transfected a weakly metastatic and E-cadherin-expressing breast cancer cell line, MCF-7, with N-cadherin and analyzed the effects on cell migration, invasion, and metastasis. Transfected cells expressed both E- and N-cadherin and exhibited homotypic cell adhesion from both molecules. In vitro, N-cadherin-expressing cells migrated more efficiently, showed an increased invasion of Matrigel, and adhered more efficiently to monolayers of endothelial cells. All cells produced low levels of the matrix metalloproteinase MMP-9, which was dramatically upregulated by treatment with FGF-2 only in N-cadherin-expressing cells. Migration and invasion of Matrigel were also greatly enhanced by this treatment. When injected into the mammary fat pad of nude mice, N-cadherin-expressing cells, but not control MCF-7 cells, metastasized widely to the liver, pancreas, salivary gland, omentum, lung, lymph nodes, and lumbar spinal muscle. The expression of both E- and N-cadherin was maintained both in the primary tumors and metastatic lesions. These results demonstrate that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-cadherin. The increase in MMP-9 production by N-cadherin-expressing cells in response to a growth factor may endow them with a greater ability to penetrate matrix protein barriers, while the increase in their adherence to endothelium may improve their ability to enter and exit the vasculature, two properties that may be responsible for metastasis of N-cadherin-expressing cells.  相似文献   

20.
Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号