首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carboxyl-terminal regions of the fibrinogen Aalpha chains (alphaC regions) form compact alphaC-domains tethered to the bulk of the molecule with flexible alphaC-connectors. It was hypothesized that in fibrinogen two alphaC-domains interact intramolecularly with each other and with the central E region preferentially through its N-termini of Bbeta chains and that removal of fibrinopeptides A and B upon fibrin assembly results in dissociation of the alphaC regions and their switch to intermolecular interactions. To test this hypothesis, we studied the interactions of the recombinant alphaC region (Aalpha221-610 fragment) and its subfragments, alphaC-connector (Aalpha221-391) and alphaC-domain (Aalpha392-610), between each other and with the recombinant (Bbeta1-66)2 and (beta15-66)2 fragments and NDSK corresponding to the fibrin(ogen) central E region, using laser tweezers-based force spectroscopy. The alphaC-domain, but not the alphaC-connector, bound to NDSK, which contains fibrinopeptides A and B, and less frequently to desA-NDSK and (Bbeta1-66)2 containing only fibrinopeptides B; it was poorly reactive with desAB-NDSK and (beta15-66)2 both lacking fibrinopeptide B. The interactions of the alphaC-domains with each other and with the alphaC-connector were also observed, although they were weaker and heterogeneous in strength. These results provide the first direct evidence for the interaction between the alphaC-domains and the central E region through fibrinopeptide B, in agreement with the hypothesis given above, and indicate that fibrinopeptide A is also involved. They also confirm the hypothesized homomeric interactions between the alphaC-domains and display their interaction with the alphaC-connectors, which may contribute to covalent cross-linking of alpha polymers in fibrin.  相似文献   

2.
The NMR solution structure of the bovine fibrinogen alphaC-domain fragment, including residues Aalpha374-538, reveals a type-I' beta-hairpin, restricted at the base by a C423-C453 disulfide linkage and a short turn preceding C423. Although both faces of the hairpin are formed mainly by hydrophilic residues, one of them is uncharged while the other has a characteristic pattern of charged residues which are highly conserved among vertebrate species. Chemical shift indexing and relaxation data indicate the presence of a collapsed hydrophobic region next to the hairpin that includes approximately 30 residues with slower concerted motion and higher content of nonpolar residues and, according to a previous study (Tsurupa, G., Tsonev, L., and Medved, L. (2002) Biochemistry 41, 6449-6459), may cooperate with the hairpin to form a compact cooperative unit (domain). Structure and relaxation data show that the region between C423 and C453 is populated by both random coil and beta-structure, suggesting that the cooperative structure in the isolated alphaC-domain is intrinsically unstable. This observation is in agreement with a very low energy of stabilization of the Aalpha374-538 fragment determined in unfolding experiments. The low stability of the alphaC-domain suggests a possible explanation for the previously observed intra- and intermolecular interactions of these domains in fibrinogen and fibrin.  相似文献   

3.
Previous electron microscopy (EM) studies revealed that the proteolytically prepared, truncated, bovine fibrinogen alphaC-domain (Aalpha223-539 fragment) upon transfer from acidic to neutral pH formed ordered oligomers which could mimic alpha polymers of cross-linked fibrin. In this study, we demonstrated that although its recombinant analog, bAalpha224-538, as well as the full-length version of the alphaC-domain (bAalpha224-568), upon similar treatment also formed oligomers with ordered structure, both were monomeric when kept in neutral pH buffer. To search further for conditions for their oligomerization, we treated bAalpha224-568 with factor XIIIa, purified the cross-linked soluble fraction, and confirmed that it consisted of oligomers. Similar cross-linked oligomers were obtained with the recombinant human alphaC-domain (residues Aalpha221-610). In a cell adhesion assay, the adhesion of human umbilical vein endothelial cells (HUVEC) to the alphaC-domains substantially increased upon oligomerization. These results demonstrate that the recombinant alphaC-domains can form stable oligomers which may mimic properties of the alphaC-domains in cross-linked fibrin.  相似文献   

4.
Tsurupa G  Medved L 《Biochemistry》2001,40(3):801-808
Molecular defects in the alphaC-domains of some abnormal fibrinogens have been associated with impaired fibrin-mediated activation of plasminogen (Pg) by its activator tPA, suggesting the involvement of these domains in fibrinolysis. To test this suggestion, we expressed in E. coli the alphaC-fragment (residues Aalpha221-610) corresponding to the entire alphaC-domain as well as its NH(2)- and COOH-terminal halves (residues Aalpha221-391 and Aalpha392-610) and tested their effects on activation of Pg and their interaction with Pg and tPA. When the activation was monitored by cleavage of a chromogenic substrate with newly formed plasmin, the reaction was much more efficient in the presence of the alphaC-fragment. This stimulation was abolished upon digestion of the alphaC-fragment with plasmin. In surface plasmon resonance experiments, both tPA and Pg bound to the immobilized alphaC-fragment with K(d)s of 33 and 32 nM, respectively. Similar results were obtained by ELISA. This binding occurred via independent sites since saturating amounts of Pg did not prevent binding of tPA and vice versa. Both sites were localized in the COOH-terminal half of the alphaC-domain since the Aalpha392-610 fragment bound both tPA and Pg and was an effective stimulator whereas Aalpha221-391 was inactive. These results indicate that the fibrinogen alphaC-domains contain novel high-affinity tPA- and Pg-binding sites that play an important role in the regulation of fibrinolysis.  相似文献   

5.
Our previous studies revealed that the fibrinogen αC-domains undergo conformational changes and adopt a physiologically active conformation upon their self-association into αC polymers in fibrin. In the present study, we analyzed the mechanism of αC polymer formation and tested our hypothesis that self-association of the αC-domains occurs through the interaction between their N-terminal subdomains and may include β-hairpin swapping. Our binding experiments performed by size-exclusion chromatography and optical trap-based force spectroscopy revealed that the αC-domains self-associate exclusively through their N-terminal subdomains, while their C-terminal subdomains were found to interact with the αC-connectors that tether the αC-domains to the bulk of the molecule. This interaction should reinforce the structure of αC polymers and provide the proper orientation of their reactive residues for efficient cross-linking by factor XIIIa. Molecular modeling of self-association of the N-terminal subdomains confirmed that the hypothesized β-hairpin swapping does not impose any steric hindrance. To "freeze" the conformation of the N-terminal subdomain and prevent the hypothesized β-hairpin swapping, we introduced by site-directed mutagenesis an extra disulfide bond between two β-hairpins of the bovine Aα406-483 fragment corresponding to this subdomain. The experiments performed by circular dichroism revealed that Aα406-483 mutant containing Lys429Cys/Thr463Cys mutations preserved its β-sheet structure. However, in contrast to wild-type Aα406-483, this mutant had lower tendency for oligomerization, and its structure was not stabilized upon oligomerization, in agreement with the above hypothesis. On the basis of the results obtained and our previous findings, we propose a model of fibrin αC polymer structure and molecular mechanism of assembly.  相似文献   

6.
Interactions mediated by the N-terminus of fibrinogen's Bbeta chain   总被引:1,自引:0,他引:1  
Gorkun OV  Litvinov RI  Veklich YI  Weisel JW 《Biochemistry》2006,45(49):14843-14852
Specific molecular interactions mediated by the N-terminus of fibrinogen's Bbeta chain were revealed using laser tweezers-based force spectroscopy. We examined interactions between fibrinogen fragments representing the center of the molecule, NDSK, desA-NDSK, and desAB-NDSK, and two recombinant fibrinogens, gammaD364H and gammaD364A, which have nonfunctional gamma-chain polymerization sites to prevent the dominant knob-hole binding. Interactions between desA-NDSK, where the N-terminus of the Bbeta chain is present, and the fibrinogen variants showed a complex spectrum of rupture forces which disappeared with desAB-NDSK, lacking both FpA and FpB. The interactions between desA-NDSK and gammaD364H or gammaD364A were inhibited by addition of soluble FpB, but not FpA or the polymerization inhibitor peptides GPRP and GHRP. When gammaD364H fibrinogen was replaced with its X-fragment lacking alphaC- domains or with fragment D, the strongest component of the rupture force spectrum disappeared, suggesting interactions between the uncleaved FpB and the alphaC-domain. Electron microscopy confirmed the binding of desA-NDSK to either D or E regions of fibrinogen as well as to alphaC-domains. The data demonstrate the existence of weak transient interactions within and between fibrin molecules mediated by the N-terminus of the fibrinogen Bbeta chain.  相似文献   

7.
The structure and stability of the 16-amino-acid-residue fragment [IG(46-61)] corresponding to the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus was investigated by means of CD and NMR spectroscopy and by differential scanning calorimetry. The CD and 2D NMR experiments were carried out (i) in water at different temperatures and (ii) at one temperature (305 K), with only CD, at different TFE concentrations. Our results show that the IG(46-61) peptide possesses organized three-dimensional structure at all investigated temperatures. The three-dimensional structure of the IG(46-61) peptide resembles the general shape of a beta-hairpin that is also observed for this peptide in the experimental structure of the B3 domain in the whole G protein; the structure is stabilized by hydrophobic interactions between nonpolar side chains. Our study shows that the melting temperature of the IG(46-61) peptide is about 320 K which supports the hypothesis that the investigated peptide can serve as a folding initiation site of the B3 domain of the immunoglobulin binding protein G.  相似文献   

8.
Accumulation of lipoprotein(a) (Lp(a)) in atherosclerotic plaques is mediated through interaction of fibrin-(ogen) deposits with the apolipoprotein(a) (apo(a)) moiety of Lp(a). It was suggested that because apo(a) competes with plasminogen for binding to fibrin, causing inhibition of fibrinolysis, it could also promote atherothrombosis. Because the fibrin(ogen) alphaC-domains bind plasminogen and tissue-type plasminogen activator with high affinity in a Lys-dependent manner, we hypothesized that they could also bind apo(a). To test this hypothesis, we studied the interaction between the recombinant apo(a) A10 isoform and the recombinant alphaC-fragment (Aalpha-(221-610)) corresponding to the alphaC-domain by enzyme-linked immunosorbent assay and surface plasmon resonance. Both methods revealed a high affinity interaction (Kd = 19-21 nm) between the immobilized alphaC-fragment and apo(a), indicating that the former contains an apo(a)-binding site. This affinity was comparable to that of apo(a) for fibrin. At the same time, no interaction was observed between soluble fibrinogen and immobilized apo(a), suggesting that, in the former, this and other apo(a)-binding sites are cryptic. Further experiments with truncated recombinant variants of the alphaC-fragment allowed localization of the apo(a)-binding site to the Aalpha-(392-610) region. The presence of epsilon-aminocaproic acid only slightly inhibited binding of apo(a) to the alphaC-fragment, indicating the Lys-independent nature of their interaction. In agreement, the influence of plasminogen or tissue-type plasminogen activator on binding of apo(a) to the alphaC-fragment was minimal. These results indicate that the alphaC-domains contain novel high affinity apo(a)-binding sites that may provide a Lys-independent mechanism for bringing Lp(a) to places of fibrin deposition such as injured vessels or atherosclerotic lesions.  相似文献   

9.
The interaction of fibronectin with fibrin and its incorporation into fibrin clots are thought to be important for the formation of a provisional matrix that promotes cell adhesion and migration during wound healing. However, it is still unclear whether fibronectin interacts with both fibrin and fibrinogen or fibrin only and whether fibronectin binds exclusively to the fibrin(ogen) alphaC domains. To address these questions, we studied the interaction of fibronectin with fibrinogen, fibrin, and their proteolytic and recombinant fragments. In both ELISA and surface plasmon resonance (SPR) experiments, immobilized fibrinogen did not bind fibronectin at all, but after conversion to fibrin, it bound fibronectin with high affinity. To test which regions of fibrin are involved in this binding, we studied the interaction of fibronectin with the fibrin-derived D-D:E(1) complex and a recombinant alphaC fragment (residues Aalpha221-610) corresponding to the alphaC domain that together encompass the whole fibrin(ogen) molecule. In ELISA, when fibronectin was added to the immobilized D-D:E(1) complex or the immobilized alphaC fragment, only the latter exhibited binding. Likewise, when fibronectin was immobilized and the complex or the alphaC fragment was added, only the latter was observed to bind. The selective interaction between fibronectin and the alphaC fragment was confirmed by SPR. The fibronectin-binding site was further localized to the NH(2) terminal connector region of the alphaC domain since in ELISA, the immobilized recombinant Aalpha221-391 sub-fragment bound fibronectin well while the immobilized recombinant Aalpha392-610 sub-fragment exhibited no binding. This finding was confirmed by ligand blotting analysis. Thus, the results provide direct evidence for the existence of a cryptic high-affinity fibronectin-binding site in the Aalpha221-391 region of the fibrinogen alphaC domain that is not accessible in fibrinogen but becomes exposed in fibrin.  相似文献   

10.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

11.
It was shown recently that tissue transglutaminase and presumably plasma transglutaminase, factor XIIIa, can covalently incorporate into fibrin(ogen) a physiologically active peptide, thymosin beta(4) [(Huff et al. (2002) FASEB J. 16, 691-696]. To clarify the mechanism of this incorporation, we studied the interaction of thymosin beta(4) with fibrinogen, fibrin, and their recombinant fragments, the gamma-module (gamma-chain residues 148-411), and the alphaC-domain (Aalpha-chain residues 221-610) and its truncated variants by immunoblot and ELISA. No significant noncovalent interaction between them was detected in the absence of activated factor XIII, while in its presence thymosin beta(4) was effectively incorporated into fibrin and to a lesser extent into fibrinogen. The incorporation at physiological concentrations of fibrin(ogen) and factor XIII was significant with molar incorporation ratios of thymosin beta(4) to fibrinogen and fibrin of 0.2 and 0.4, respectively. Further experiments revealed that although activated factor XIII incorporates thymosin beta(4) into the isolated gamma-module and alphaC-domain, in fibrin the latter serves as the major incorporation site. This site was further localized to the COOH-terminal portion of the alphaC-domain including residues 392-610.  相似文献   

12.
Nonsubstrate interaction of thrombin with fibrinogen promotes sequential cleavage of fibrinopeptides A and B (fpA and fpB, respectively) from the latter, resulting in its conversion into fibrin. The recently established crystal structure of human thrombin in complex with the central part of human fibrin clarified the mechanism of this interaction. Here, we reveal new details of the structure and present the results of molecular modeling of the fpA- and fpB-containing portions of the Aalpha and Bbeta chains, not identified in the complex, in both fibrinogen and protofibrils. The analysis of the results reveals that in fibrinogen the fpA-containing portions are in a more favorable position to bind in the active site cleft of bound thrombin. Surface plasmon resonance experiments establish that the fpB-containing portions interact with the fibrin-derived dimeric D-D fragment, suggesting that in protofibrils they bind to the newly formed DD regions bringing fpB into the vicinity of bound thrombin. These findings provide a coherent rationale for the preferential removal of fpA from fibrinogen at the first stage of fibrin assembly and the accelerated cleavage of fpB from protofibrils and/or fibrils at the second stage.  相似文献   

13.
Kobayashi N  Honda S  Yoshii H  Munekata E 《Biochemistry》2000,39(21):6564-6571
A short C-terminal fragment of immunoglobulin-binding domain of streptococcal protein G is known to form nativelike beta-hairpin at physiological conditions. To understand the cooperative folding of the short peptide, eight Ala-substituted mutants of the fragment were investigated with respect to their structural stabilities by analyzing temperature dependence of NMR signals. On comparison of the obtained thermodynamic parameters, we found that the nonpolar residues Tyr45 and Phe52 and the polar residues Asp46 and Thr49 are crucial for the beta-hairpin folding. The results suggest a strong interaction between the nonpolar side chains that participates in a putative hydrophobic cluster and that the polar side chains form a fairly rigid conformation around the loop (46-51). We also investigated the complex formation of the mutants with N-terminal fragment at the variety of temperature to get their thermal unfolding profiles and found that the mutations on the residues Asp46 and Thr49 largely destabilized the complexes, while substitution of Asp47 slightly stabilized the complex. From these results, we deduced that both the hydrophobic cluster formation and the rigidity of the loop (46-51) cooperatively stabilize the beta-hairpin structure of the fragment. These interactions which form a stable beta-hairpin may be the initial structural scaffold which is important in the early folding events of the whole domain.  相似文献   

14.
Fibrinogen interactions with vascular endothelial cells are implicated in various physiological and pathophysiological events, including angiogenesis and wound healing. We have shown previously that integrin alpha(5)beta(1) is a fibrinogen receptor on endothelial cells [Suehiro, K., Gailit, J., and Plow, E.F. (1997) J. Biol. Chem. 272, 5360-5366]. In the present study, we have characterized fibrinogen interactions with purified alpha(5)beta(1) and have identified the recognition sequence in fibrinogen for alpha(5)beta(1). The binding of fibrinogen to immobilized alpha(5)beta(1) was selectively supported by Mn(2+). Fibrinogen bound to purified alpha(5)beta(1) in a time-dependent, specific, and saturable manner in the presence of Mn(2+), and the binding was blocked completely by Arg-Gly-Asp (RGD)-containing peptides and by anti-alpha(5) and anti-alpha(5)beta(1) monoclonal antibodies. A monoclonal antibody directed to the C-terminal RGD sequence at Aalpha572-574 significantly inhibited the binding of fibrinogen to alpha(5)beta(1), whereas monoclonal antibodies directed to either the N-terminal RGD sequence at Aalpha95-97 or the C-terminus of the gamma-chain did not. Furthermore, substituting RGE for RGD at position Aalpha95-97 in recombinant fibrinogen had a minimal effect on binding, whereas substituting RGE for RGD at position Aalpha572-574 decreased binding by 90%. These results demonstrate that the C-terminal RGD sequence at Aalpha572-574 is required for the interaction of fibrinogen with alpha(5)beta(1).  相似文献   

15.
An elongated version of the de novo designed beta-hairpin peptide, BH8, has allowed us to gain insight into the role of electrostatic interactions in beta-hairpin stability. A Lys-Glu electrostatic pair has been introduced by adding a residue at the beginning and at the end of the N-terminal and C-terminal strands, respectively, of the beta-hairpin structure, in both orientations. The two resulting peptides and controls having Ala residues at these positions and different combinations of Ala with Lys, or Glu residues, have been analyzed by nuclear magnetic resonance (NMR), under different pH and ionic strength conditions. All of the NMR parameters, in particular the conformational shift analysis of Calpha protons and the coupling constants, (3)J(HNalpha), correlate well and the population estimates are in reasonable agreement among the different methods used. In the most structured peptides, we find an extension of the beta-hairpin structure comprising the two extra residues. Analysis of the pH and salt dependence shows that ionic pairs contribute to beta-hairpin stability. The interaction is electrostatic in nature and can be screened by salt. There is also an important salt-independent contribution of negatively charged groups to the stability of this family of beta-hairpin peptides.  相似文献   

16.
Fifty-five molecular dynamics runs of two three-stranded antiparallel beta-sheet peptides were performed to investigate the relative importance of amino acid sequence and native topology. The two peptides consist of 20 residues each and have a sequence identity of 15 %. One peptide has Gly-Ser (GS) at both turns, while the other has d-Pro-Gly ((D)PG). The simulations successfully reproduce the NMR solution conformations, irrespective of the starting structure. The large number of folding events sampled along the trajectories at 360 K (total simulation time of about 5 micros) yield a projection of the free-energy landscape onto two significant progress variables. The two peptides have compact denatured states, similar free-energy surfaces, and folding pathways that involve the formation of a beta-hairpin followed by consolidation of the unstructured strand. For the GS peptide, there are 33 folding events that start by the formation of the 2-3 beta-hairpin and 17 with first the 1-2 beta-hairpin. For the (D)PG peptide, the statistical predominance is opposite, 16 and 47 folding events start from the 2-3 beta-hairpin and the 1-2 beta-hairpin, respectively. These simulation results indicate that the overall shape of the free-energy surface is defined primarily by the native-state topology, in agreement with an ever-increasing amount of experimental and theoretical evidence, while the amino acid sequence determines the statistically predominant order of the events.  相似文献   

17.
We have investigated the solution structure, equilibrium properties, and folding kinetics of a 17-residue beta-hairpin-forming peptide derived from the protein ubiquitin. NMR experiments show that at 4 degrees C the peptide has a highly populated beta-hairpin conformation. At protein concentrations higher than 0.35 mM, the peptide aggregates. Sedimentation equilibrium measurements show that the aggregate is a trimer, while NMR indicates that the beta-hairpin conformation is maintained in the trimer. The relaxation kinetics in nanosecond laser temperature-jump experiments reveal a concentration-independent microsecond phase, corresponding to beta-hairpin unfolding-refolding, and a concentration-dependent millisecond phase due to oligomerization. Kinetic modeling of the relaxation rates and amplitudes yields the folding and unfolding rates for the monomeric beta-hairpin, as well as assembly and disassembly rates for trimer formation consistent with the equilibrium constant determined by sedimentation equilibrium. When the net charge on the peptides and ionic strength were taken into account, the rate of trimer assembly approaches the Debye-Smoluchowski diffusion limit. At 300 K, the rate of formation of the monomeric hairpin is (17 micros)(-1), compared to rates of (0.8 micros)(-1) to (52 micros)(-1) found for other peptides. After using Kramers theory to correct for the temperature dependence of the pre-exponential factor, the activation energy for hairpin formation is near zero, indicating that the barrier to folding is purely entropic. Comparisons with previously measured rates for a series of hairpins are made to distinguish between zipper and hydrophobic collapse mechanisms. Overall, the experimental data are most consistent with the zipper mechanism in which structure formation is initiated at the turn, the mechanism predicted by the Ising-like statistical mechanical model that was developed to explain the equilibrium and kinetic data for the beta-hairpin from protein GB1. In contrast, the majority of simulation studies favor a hydrophobic collapse mechanism. However, with few exceptions, there is little or no quantitative comparison of the simulation results with experimental data.  相似文献   

18.
Platt GW  Simpson SA  Layfield R  Searle MS 《Biochemistry》2003,42(46):13762-13771
A F45W mutant of yeast ubiquitin has been used as a model system to examine the effects of nonnative local interactions on protein folding and stability. Mutating the native TLTGK G-bulged type I turn in the N-terminal beta-hairpin to NPDG stabilizes a nonnative beta-strand alignment in the isolated peptide fragment. However, NMR structural analysis of the native and mutant proteins shows that the NPDG mutant is forced to adopt the native beta-strand alignment and an unfavorable type I NPDG turn. The mutant is significantly less stable (approximately 9 kJ mol(-1)) and folds 30 times slower than the native sequence, demonstrating that local interactions can modulate protein stability and that attainment of a nativelike beta-hairpin conformation in the transition state ensemble is frustrated by the turn mutations. Surprising, alcoholic cosolvents [5-10% (v/v) TFE] are shown to accelerate the folding rate of the NPDG mutant. We conclude, backed-up by NMR data on the peptide fragments, that even though nonnative states in the denatured ensemble are highly populated and their stability further enhanced in the presence of cosolvents, the simultaneous increase in the proportion of nativelike secondary structure (hairpin or helix), in rapid equilibrium with nonnative states, is sufficient to accelerate the folding process. It is evident that modulating local interactions and increasing nonnative secondary structure propensities can change protein stability and folding kinetics. However, nonlocal contacts formed in the global cooperative folding event appear to determine structural specificity.  相似文献   

19.
Centrins are well-conserved calcium binding proteins from the EF-hand superfamily implicated in various cellular functions, such as centrosome duplication, DNA repair, and nuclear mRNA export. The intrinsic molecular flexibility and the self-association tendency make difficult the structural characterization of the integral protein. In this paper we report the solution structure, the Ca2+ binding properties, and the intermolecular interactions of the N-terminal domain of two human centrin isoforms, HsCen1 and HsCen2. In the absence of Ca2+, the N-terminal construct of HsCen2 revealed a compact core conformation including four almost antiparallel alpha-helices and a short antiparallel beta-sheet, very similar to the apo state structure of other calcium regulatory EF-hand domains. The first 25 residues show a highly irregular and dynamic structure. The three-dimensional model for the N-terminal domain of HsCen1, based on the high sequence conservation and NMR spectroscopic data, shows very close structural properties. Ca2+ titration of the apo-N-terminal domain of HsCen1 and HsCen2, monitored by NMR spectroscopy, revealed a very weak affinity (10(2)-10(3) M(-1)), suggesting that the cellular role of this domain is not calcium dependent. Isothermal calorimetric titrations showed that an 18-residue peptide, derived from the N-terminal unstructured fragment, has a significant affinity (approximately 10(5) M(-1)) for the isolated C-terminal domain, suggesting an active role in the self-assembly of centrin molecules.  相似文献   

20.
Previous studies have indicated that rabbit antisera R2 and R33 to human fibrinopeptide A differ markedly in terms of cross-reactivity with fibrinogen and fibrinopeptide A-containing fragments of the fibrinogen molecule. Antiserum specificity was characterized by comparison of inhibition of binding to radiolabeled tyrosyl fibrinopeptide A produced by synthetic fragments and enzymatic digests of the fibrinopeptide A molecule vs. the complete fibrinopeptide sequence (Aalpha 1-16). Synthetic COOH-terminal homologues through the dodecapeptide (Aalpha 5-16) exhibited less than 16% immunoreactivity with R33 antiserum, which cross-reacts extensively with fibrinogen and fibrinopeptide A-containing fibrinogen fragments. In contrast, the synthetic COOH-terminal decapeptide (Aalpha 7-16) gave 100% immunoreactivity with R2 antiserum, which cross-reacts minimally with fibrinogen and fibrinopeptide A-containing fibrinogen fragments. Synthetic homologues smaller than Aalpha 7-16, such as Aalpha9-16 and Aalpha 7-11, reacted only minimally with R2 antiserum. Carboxypeptidase B digests of fibrinopeptide A retained less than 25% of their initial immunoreactivity with R2 antiserum. It is concluded that the antigenic determinants of R2 immunoreactivity reside entirely within the COOH-terminal ten-residue sequence of fibrinopeptide A, and that Phe-8, Asp-7, and Arg-16 contribute significantly to R2 immunoreactivity. The R2 antigenic determinants appear to be significantly less accessible to reaction with antibody than the R33 determinants when the fibrinopeptide is attached to its parent alpha chain (Canfield et al., 1976). A possible mechanism for the sequestration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号