首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hematopoietic cells, the signals initiated by activation of the phosphoinositide 3-kinase (PI3K) family have been implicated in cell proliferation and survival, membrane and cytoskeletal reorganization, chemotaxis, and the neutrophil respiratory burst. Of the four isoforms of human PI3K that phosphorylate phosphatidylinositol 4, 5-bisphosphate, only p110gamma (or PI3Kgamma) is associated with the regulatory subunit, p101, and is stimulated by G protein betagamma heterodimers. We performed immunolocalization of transfected p110gamma in HepG2 cells and found that, under resting conditions, p110gamma was present in a diffuse cytoplasmic pattern, but translocated to the cell nucleus after serum stimulation. Serum-stimulated p110gamma translocation was inhibited by pertussis toxin and could also be induced by overexpression of Gbetagamma in the absence of serum. In addition, we found that deletion of the amino-terminal 33 residues of p110gamma had no effect on association with p101 or on its agonist-regulated translocation, but truncation of the amino-terminal 82 residues yielded a p110gamma variant that did not associate with p101 and was constitutively localized in the nucleus. This finding implies that the intracellular localization of p110gamma is regulated by p101 as well as Gbetagamma. The effect of PI3Kgamma in the nucleus is an area of active investigation.  相似文献   

2.
A variety of genetic and inhibitor studies have shown that phosphoinositide 3-kinase gamma (PI3Kgamma) plays an essential role in a number of physiological responses, including neutrophil chemotaxis, mast cell degranulation, and cardiac function []. PI3Kgamma is currently thought to be composed of a p110gamma catalytic subunit and a single regulatory subunit, p101. The binding of p110gamma to p101 dramatically increases the activation of the complex by Gbetagamma subunits and, hence, is thought to be critical for the coupling of PI3Kgamma to G protein coupled receptors []. Here, we characterize a new regulatory subunit for PI3Kgamma. p84 is present in human, mouse, chicken, frog, and fugu genomes and is located beside the p101 locus. It is broadly expressed in cells of the murine immune system. Both recombinant and endogenous p84 bind p110gamma specifically and with high affinity. Binding of p84 to p110gamma substantially increases the ability of Gbetagamma to stimulate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) production both in vitro and in vivo. However, the p84/p110gamma heterodimer is approximately 4-fold less sensitive to Gbetagammas than p101/p110gamma. Endogenous murine p84 expression is substantially reduced in the absence of p110gamma expression. We conclude that p110gamma has two potential regulatory subunits in vivo, p84 and p101.  相似文献   

3.
Phosphoinositide 3-Kinase (PI3K) gamma is a lipid kinase that is regulated by G-protein-coupled receptors. It plays a crucial role in inflammatory and allergic processes. Activation of PI3Kgamma is primarily mediated by Gbetagamma subunits. The regulatory p101 subunit of PI3Kgamma binds to Gbetagamma and, thereby, recruits the catalytic p110gamma subunit to the plasma membrane. Despite its crucial role in the activation of PI3Kgamma, the structural organization of p101 is still largely elusive. Employing fluorescence resonance energy transfer measurements, coimmunoprecipitation and colocalization studies with p101 deletion mutants, we show here that distinct regions within the p101 primary structure are responsible for interaction with p110gamma and Gbetagamma. The p110gamma binding site is confined to the N terminus, whereas binding to Gbetagamma is mediated by a C-terminal domain of p101. These domains appear to be highly conserved among various species ranging from Xenopus to men. In addition to establishing a domain structure for p101, our results point to the existence of a previously unknown, p101-related regulatory subunit for PI3Kgamma.  相似文献   

4.
The ability of G protein alpha and betagamma subunits to activate the p110gamma isoform of phosphatidylinositol 3-kinase (PtdIns 3-kinase) was examined using pure, recombinant G proteins and the p101/p110gamma form of PtdIns 3-kinase reconstituted into synthetic lipid vesicles. GTP-activated Gs, Gi, Gq, or Go alpha subunits were unable to activate PtdIns 3-kinase. Dimers containing Gbeta(1-4) complexed with gamma2-stimulated PtdIns 3-kinase activity about 26-fold with EC50 values ranging from 4 to 7 nm. Gbeta5gamma2 was not able to stimulate PtdIns 3-kinase despite producing a 10-fold activation of avian phospholipase Cbeta. A series of dimers with beta subunits containing point mutations in the amino acids that undergo a conformational change upon interaction of betagamma with phosducin (beta1H311Agamma2, beta1R314Agamma2, and beta1W332Agamma2) was tested, and only beta1W332Agamma2 inhibited the ability of the dimer to stimulate PtdIns 3-kinase. Dimers containing the beta1 subunit complexed with a panel of different Ggamma subunits displayed variation in their ability to stimulate PtdIns 3-kinase. The beta1gamma2, beta1gamma10, beta1gamma12, and beta1gamma13 dimers all activated PtdIns 3-kinase about 26-fold with 4-25 nm EC50 values. The beta1gamma11 dimer, which contains the farnesyl isoprenoid group and is highly expressed in tissues containing the p101/p110gamma form of PtdIns 3-kinase, was ineffective. The role of the prenyl group on the gamma subunit in determining the activation of PtdIns 3-kinase was examined using gamma subunits with altered CAAX boxes directing the addition of farnesyl to the gamma2 subunit and geranylgeranyl to the gamma1 and gamma11 subunits. Replacement of the geranylgeranyl group of the gamma2 subunit with farnesyl inhibited the activity of beta1gamma2 on PtdIns 3-kinase. Conversely, replacement of the farnesyl group on the gamma1 and gamma11 subunit with geranylgeranyl restored almost full activity. These findings suggest that all beta subunits, with the exception of beta5, interact equally well with PtdIns 3-kinase. In contrast, the composition of the gamma subunit and its prenyl group markedly affects the ability of the betagamma dimer to stimulate PtdIns 3-kinase.  相似文献   

5.
Receptor-regulated class I phosphoinositide 3-kinases (PI3K) phosphorylate the membrane lipid phosphatidylinositol (PtdIns)-4,5-P2 to PtdIns-3,4,5-P3. This, in turn, recruits and activates cytosolic effectors with PtdIns-3,4,5-P3-binding pleckstrin homology (PH) domains, thereby controlling important cellular functions such as proliferation, survival, or chemotaxis. The class IB p110 gamma/p101 PI3K gamma is activated by G beta gamma on stimulation of G protein-coupled receptors. It is currently unknown whether in living cells G beta gamma acts as a membrane anchor or an allosteric activator of PI3K gamma, and which role its noncatalytic p101 subunit plays in its activation by G beta gamma. Using GFP-tagged PI3K gamma subunits expressed in HEK cells, we show that G beta gamma recruits the enzyme from the cytosol to the membrane by interaction with its p101 subunit. Accordingly, p101 was found to be required for G protein-mediated activation of PI3K gamma in living cells, as assessed by use of GFP-tagged PtdIns-3,4,5-P3-binding PH domains. Furthermore, membrane-targeted p110 gamma displayed basal enzymatic activity, but was further stimulated by G beta gamma, even in the absence of p101. Therefore, we conclude that in vivo, G beta gamma activates PI3K gamma by a mechanism assigning specific roles for both PI3K gamma subunits, i.e., membrane recruitment is mediated via the noncatalytic p101 subunit, and direct stimulation of G beta gamma with p110 gamma contributes to activation of PI3K gamma.  相似文献   

6.
Phosphoinositide 3-kinase (PI3K) gamma has been implicated in a vast array of physiological settings including the activation of different leukocyte species and the regulation of myocardial contractility. Activation of PI3Kgamma is primarily mediated by Gbetagamma subunits of heterotrimeric G proteins, which are recognized by a p101 regulatory subunit. Here, we describe the identification and characterization of a novel regulatory subunit of PI3Kgamma, which we termed p87(PIKAP) (PI3Kgamma adapter protein of 87 kDa). It is homologous to p101 in areas that we have recently shown that they mediate binding to the catalytic p110gamma subunit and to Gbetagamma. Like p101, p87(PIKAP) binds to both p110gamma and Gbetagamma and mediates activation of p110gamma downstream of G protein-coupled receptors. In contrast to p101, p87(PIKAP) is highly expressed in heart and may therefore be crucial to PI3Kgamma cardiac function. Moreover, p87(PIKAP) and p101 are both expressed in dendritic cells, macrophages, and neutrophils, raising the possibility of regulatory subunit-dependent differences in PI3Kgamma signaling within the same cell type. We further provide evidence that p87(PIKAP) physically interacts with phosphodiesterase (PDE) 3B, suggesting that p87(PIKAP) is also involved in the recently described noncatalytic scaffolding interaction of p110gamma with PDE3B. However, coexpression of PDE3B and PI3Kgamma subunits was not sufficient to reconstitute the regulatory effect of PI3Kgamma on PDE3B activity observed in heart, implying further molecules to be present in the complex regulating PDE3B in heart.  相似文献   

7.
Receptor stimulation of nucleotide exchange in a heterotrimeric G protein (alphabetagamma) is the primary event-modulating signaling by G proteins. The molecular mechanisms at the basis of this event and the role of the G protein subunits, especially the betagamma complex, in receptor activation are unclear. In a reconstituted system, a purified muscarinic receptor, M2, activates G protein heterotrimers alphai2beta1gamma5 and alphai2beta1gamma7 with equal efficacy. However, when the alpha subunit type is substituted with alphao, alphaobeta1gamma7 shows a 100% increase in M2-stimulated GTP hydrolysis compared with alphaobeta1gamma5. Using a sensitive assay based on betagamma complex stimulation of phospholipase C activity, we show that both beta1gamma5 and beta1gamma7 form heterotrimers equally well with alphao and alphai. These results indicate that the gamma subunit interaction with a receptor is critical for modulating nucleotide exchange and is influenced by the subunit-type composition of the heterotrimer.  相似文献   

8.
AMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable alphabetagamma heterotrimer comprising a catalytic alpha and two non-catalytic subunits, beta and gamma. The beta subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain. Here we find that the conserved C-terminal 85-residue sequence of the beta subunit, beta1-(186-270), is sufficient to form an active AMP-dependent heterotrimer alpha1beta1-(186-270)-gamma1, whereas the 25-residue beta1 C-terminal (246-270) sequence is sufficient to bind gamma1, gamma2, or gamma3 but not the alpha subunit. Deletion of the beta C-terminal Ile-270 precludes betagamma association in the absence of the alpha subunit, but the presence of the alpha subunit or substitution of Ile-270 with Ala or Glu restores betagamma binding. Truncation of the alpha subunit reveals that beta1 binding requires the alpha1-(313-473) sequence. The conserved C-terminal 85-residue sequence of the beta subunit (90% between beta1 and beta2) is the primary alphagamma binding sequence responsible for the formation of the AMPK alphabetagamma heterotrimer.  相似文献   

9.
By using purified preparations we show that nanomolar concentrations of Gbetagamma significantly stimulated lipid kinase activity of phosphatidylinositol 3-kinase (PI3K) beta and PI3Kgamma in the presence as well as in the absence of non-catalytic subunits such as p85alpha or p101. Concomitantly, Gbetagamma stimulated autophosphorylation of the catalytic subunit of PI3Kgamma (EC(50), 30 nM; stoichiometry >/=0.6 mol of P(i)/mol of p110gamma), which also occurred in the absence of p101. Surprisingly, we found that p101 affected the lipid substrate preference of PI3Kgamma in its Gbetagamma-stimulated state. With phosphatidylinositol as substrate, p110gamma but not p101/p110gamma was significantly stimulated by Gbetagamma to form PI-3-phosphate (EC(50), 20 nM). The opposite situation was found when PI-4,5-bisphosphate served as substrate. Gbetagamma efficiently and potently (EC(50), 5 nM) activated the p101/p110gamma heterodimer but negligibly stimulated the p110gamma monomer to form PI-3,4,5-trisphosphate. However, this weak stimulatory effect on p110gamma was overcome by excess concentrations of Gbetagamma (EC(50), 100 nM). This finding is in accordance with the in vivo situation, where activated PI3K catalyzes the formation of PI-3,4,5-trisphosphate but not PI-3-phosphate. We conclude that p101 is responsible for PI-4, 5-bisphosphate substrate selectivity of PI3Kgamma by sensitizing p110gamma toward Gbetagamma in the presence of PI-4,5-P(2).  相似文献   

10.
To establish the biological function of thioacylation (palmitoylation), we have studied the heterotrimeric guanine nucleotide-binding protein (G protein) subunits of the pheromone response pathway of Saccharomyces cerevisiae. The yeast G protein gamma subunit (Ste18p) is unusual among G(gamma) subunits because it is farnesylated at cysteine 107 and has the potential to be thioacylated at cysteine 106. Substitution of either cysteine results in a strong signaling defect. In this study, we found that Ste18p is thioacylated at cysteine 106, which depended on prenylation of cysteine 107. Ste18p was targeted to the plasma membrane even in the absence of prenylation or thioacylation. However, G protein activation released prenylation- or thioacylation-defective Ste18p into the cytoplasm. Hence, lipid modifications of the G(gamma) subunit are dispensable for G protein activation by receptor, but they are required to maintain the plasma membrane association of G(betagamma) after receptor-stimulated release from G(alpha). The G protein alpha subunit (Gpa1p) is tandemly modified at its N terminus with amide- and thioester-linked fatty acids. Here we show that Gpa1p was thioacylated in vivo with a mixture of radioactive myristate and palmitate. Mutation of the thioacylation site in Gpa1p resulted in yeast cells that displayed partial activation of the pathway in the absence of pheromone. Thus, dual lipidation motifs on Gpa1p and Ste18p are required for a fully functional pheromone response pathway.  相似文献   

11.
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.  相似文献   

12.
To investigate the role of subcellular localization in regulating the specificity of G protein betagamma signaling, we have applied the strategy of bimolecular fluorescence complementation (BiFC) to visualize betagamma dimers in vivo. We fused an amino-terminal yellow fluorescent protein fragment to beta and a carboxyl-terminal yellow fluorescent protein fragment to gamma. When expressed together, these two proteins produced a fluorescent signal in human embryonic kidney 293 cells that was not obtained with either subunit alone. Fluorescence was dependent on betagamma assembly in that it was not obtained using beta2 and gamma1, which do not form a functional dimer. In addition to assembly, BiFC betagamma complexes were functional as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent beta and gamma subunits and by their abilities to potentiate activation of adenylyl cyclase by alpha(s) in COS-7 cells. To investigate isoform-dependent targeting specificity, the localization patterns of dimers formed by pair-wise combinations of three different beta subunits with three different gamma subunits were compared. BiFC betagamma complexes containing either beta1 or beta2 localized to the plasma membrane, whereas those containing beta5 accumulated in the cytosol or on intracellular membranes. These results indicate that the beta subunit can direct trafficking of the gamma subunit. Taken together with previous observations, these results show that the G protein alpha, beta, and gamma subunits all play roles in targeting each other. This method of specifically visualizing betagamma dimers will have many applications in sorting out roles for particular betagamma complexes in a wide variety of cell types.  相似文献   

13.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

14.
Although Gbetagamma is thought to mediate mitogen-activated protein kinase (MAPK) activation in response to G protein-coupled receptor stimulation, the mechanisms involved in this pathway have not been clearly defined. Phosphoinositide 3-kinase (PI3K) has been proposed as an early intermediate in this process, but its role has remained elusive. We have observed that dominant negative mutants of p110beta, but not of p110gamma, inhibited MAPK stimulation in response to lysophosphatidic acid (LPA). The role of p110beta was located upstream from Ras. To determine which of the lipid or protein kinase activities of p110beta were important for Ras activation, we produced a mutant p110beta lacking the lipid but not the protein kinase activity. This protein displayed a dominant negative activity similar to a kinase-dead mutant, indicating that p110beta lipid kinase activity was essentially involved in Ras activation. In agreement, overexpression of the lipid phosphatase PTEN was found to specifically inhibit Ras stimulation induced by LPA. In addition, we have observed that the PH domain-containing adapter protein Gab1, which is involved in p110beta activation during LPA stimulation, is also implicated in this pathway downstream of p110beta. Indeed, both membrane redistribution and phosphorylation of Gab1 were reduced in the presence of PI3K inhibitors or dominant negative p110beta. Downstream of Gab1, the tyrosine phosphatase SHP2 was found to mediate Ras activation in response to LPA and to be recruited through PI3K and Gab1, because transfection of Gab1 mutant deficient for SHP2 binding inhibited Ras activation without interfering with PI3K activation. We conclude that LPA-induced Ras activation is mediated by a p110beta/Gab1/SHP2 pathway. Moreover, we present data indicating that p110beta is effectively the target of betagamma in this pathway, suggesting that the p110beta/Gab1/SHP2 pathway provides a novel link between betagamma and Ras by integrating two early events of LPA signaling, i.e. Gbetagamma release and tyrosine kinase receptor transactivation.  相似文献   

15.
The G protein betagamma complex regulates a wide range of effectors, including the phospholipase Cbeta isozymes (PLCbetas). Prenyl modification of the gamma subunit is necessary for this activity. Evidence presented here supports a direct interaction between the G protein gamma subunit prenyl group and PLCbeta isozymes. A geranylgeranylated peptide corresponding to the C-terminal region of the gamma subunit type, gamma2, strongly inhibits stimulation of PLCbeta2 and PLCbeta3 activity by the betagamma complex. This effect is specific because the same peptide has no effect on stimulation of PLCbeta by an alpha subunit type, alphaq. Prenylation of the gamma peptide is required for its inhibitory effect. When interaction of prenylated gamma subunit peptide to fluorophore-tagged PLCbeta2 was examined by fluorescence spectroscopy, prenylated but not unprenylated peptide increased PLCbeta2 fluorescence emission energy, indicating direct binding of the prenyl moiety to PLCbeta. In addition, fluorescence resonance energy transfer was detected between fluorophore tagged PLCbeta and wild type betagamma complex but not an unprenylated mutant betagamma complex. We conclude that a major function of the gamma subunit prenyl group is to facilitate direct protein-protein interaction between the betagamma complex and an effector, phospholipase Cbeta.  相似文献   

16.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

17.
Mammalian AMP-activated protein kinase is a serine/threonine protein kinase that acts as a sensor of cellular energy status. AMP-activated protein kinase is a heterotrimer of three different subunits, i.e. alpha, beta, and gamma, with alpha being the catalytic subunit and beta and gamma having regulatory roles. Although several studies have defined different domains in alpha and beta involved in the interaction with the other subunits of the complex, little is known about the regions of the gamma subunits involved in these interactions. To study this, we have made sequential deletions from the N termini of the gamma subunit isoforms and studied the interactions with alpha and beta subunits, both by two-hybrid analysis and by co-immunoprecipitation. Our results suggest that a conserved region of 20-25 amino acids in gamma1, gamma2, and gamma3, immediately N-terminal to the Bateman domains, is required for the formation of a functional, active alphabetagamma complex. This region is required for the interaction with the beta subunits. The interaction between the alpha and gamma subunits does not require this region and occurs instead within the Bateman domains of the gamma subunit, although the alpha-gamma interaction does appear to stabilize the beta-gamma interaction. In addition, sequential deletions from the C termini of the gamma subunits indicate that deletion of any of the CBS (cystathionine beta-synthase) motifs prevents the formation of a functional complex with the alpha and beta subunits.  相似文献   

18.
Rhodopsin controls a conformational switch on the transducin gamma subunit   总被引:4,自引:0,他引:4  
Rhodopsin, a prototypical G protein-coupled receptor, catalyzes the activation of a heterotrimeric G protein, transducin, to initiate a visual signaling cascade in photoreceptor cells. The betagamma subunit complex, especially the C-terminal domain of the transducin gamma subunit, Gtgamma(60-71)farnesyl, plays a pivotal role in allosteric regulation of nucleotide exchange on the transducin alpha subunit by light-activated rhodopsin. We report that this domain is unstructured in the presence of an inactive receptor but forms an amphipathic helix upon rhodopsin activation. A K65E/E66K charge reversal mutant of the gamma subunit has diminished interactions with the receptor and fails to adopt the helical conformation. The identification of this conformational switch provides a mechanism for active GPCR utilization of the betagamma complex in signal transfer to G proteins.  相似文献   

19.
The beta and gamma subunits of G proteins are tightly bound under physiological conditions, and so far, seven beta and 11 gamma subunit isoforms have been found. The relative abilities of the beta and gamma subunits to associate with each other have been studied using transfected cell assays, in vitro translation and the yeast two-hybrid system, but have not been fully characterized in various tissues. In the present study, we demonstrated the selectivity of association of the beta with gamma isoforms in bovine tissues. Immunoprecipitation of betagamma complexes from tissue extracts with antibodies against various gamma subunits and subsequent analyses revealed that beta(4) associated with the gamma subunits with the following rank order of selectivity: gamma(5) > gamma(12) > gamma(2) > gamma(3), while beta(2) bound to gamma(2), gamma(3), and gamma(12) more selectively than to gamma(5). By contrast, beta(1) associated with all gamma subunits without significant selectivity. Analyses of purified betagamma complexes containing various gamma isoforms revealed beta subunit compositions similar to those found in the immunoprecipitates. Particular combinations of beta and gamma subunit isoforms may contribute to maintaining efficient and specific signal transduction mediated by G proteins.  相似文献   

20.
The surfaces of heterotrimeric G proteins (alphabetagamma) in contact with receptors and the molecular events at these sites, which lead to G protein activation, are largely unknown. We show here that a peptide from the C terminus of a G protein gamma subunit blocks muscarinic receptor-stimulated G protein activation in a sequence-dependent fashion. A G protein mutated at the same site on the gamma subunit shows enhanced receptor stimulated nucleotide exchange without affecting G protein heterotrimerization. Ineffective contact between the gamma subunit and receptor increases the rate of receptor-stimulated nucleotide exchange. Specific interaction of the G protein gamma subunit with the receptor thus helps the betagamma complex to act at a distance and control guanine nucleotide exchange in the alpha subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号