共查询到20条相似文献,搜索用时 15 毫秒
1.
Qualitative analysis of proteins rapidly transported in ventral horn motoneurons and bidirectionally from dorsal root ganglia 总被引:7,自引:0,他引:7
Two-dimensional electrophoresis has allowed a higher-resolution comparison of rapid transport in ventral horn motoneurons and bidirectionally in dorsal root sensory neurons. Dorsal root ganglia 8 and 9, or hemisected spinal cords, from frog were selectively exposed in vitro to 35S-methionine. Transported, labelled proteins that accumulated in 3 mm segments proximal to ligatures on dorsal roots and spinal nerves or sciatic nerves were subjected to two-dimensional gel electrophoresis. Comparisons were made of fluorographic patterns from dried gels. Sixty-five species of proteins were found to be rapidly transported in both bifurcations of dorsal root sensory neurons. No abundant species of protein was rapidly transported in dorsal roots that was not also found in spinal nerves. A comparison of proteins rapidly transported in the sciatic nerve from ventral horn motoneurons with those from dorsal root sensory neurons yielded 50 common species of polypeptides. At most four minor species were possibly transported only in ventral horn motoneurons. An overall comparison indicates that at least 45 species of proteins, including all of the more abundantly transported ones, were consistently common to both dorsal root bifuractions and to ventral horn motoneurons. This appears to be the case despite the very different functions carried out by motoneurons and sensory neurons. 相似文献
2.
3.
A. G. Pakhomov 《Neurophysiology》1988,20(6):521-525
Aperiodic firing independent of extraneous stimuli at rates varying between 3–8 and 65–100 Hz (spontaneous firing activity, or SFA) was recorded at ventral root filaments of isolated, sagitally hemisected frog spinal cord. Lowest activity level was observed at temperatures of 7–11°C and an increased rate at either higher or lower temperatures. Some consistent short-lasting changes in SFA were noted straight away during the course of thermal changes: heating and cooling the preparation increased and reduced discharge rate, respectively. Characteristic activity rate for a given temperature level would set in 1–3 min after this level had stabilized. Microwave radiation of the spinal cord (6.45 GHz; specific absorption rates: 0.1, 0.4, and 2.0 W/g; duration 5 min) brought about no significant alteration in SFA at a steady temperature level. Microwave heating of the preparation and raised temperature both produced the same effects in all trials. Results would indicate that a thermal mechanism underlies the microwave effects on SFA at the ventral roots of frog spinal cord.Institute of Medical Radiology, Academy of Medical Sciences of the USSR, Obninsk. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 723–728, November-December, 1988. 相似文献
4.
The effect of extracellularly applied electrical fields on neuronal excitability and firing behavior is attributed to the interaction between neuronal morphology and the spatial distribution and level of differential polarization induced by the applied field in different elements of the neuron. The presence of voltage-gated ion channels that mediate persistent inward currents (PICs) on the dendrites of spinal motoneurons enhances the influence of electrical fields on the motoneuronal firing behavior. The goal of the present study was to investigate, with a realistic motoneuron computer model, the effects of extracellularly applied electrical fields on the excitability of spinal motoneurons with the aim of reducing the increased motoneuronal excitability after spinal cord injury (SCI). Our results suggest that electrical fields could suppress the excitability of motoneurons and reduce their firing rate significantly by modulating the magnitude of their dendritic PIC. This effect was achieved at different field directions, intensities, and polarities. The reduction in motoneuronal firing rate resulted from the reduction in the magnitude of the dendritic PIC reaching the soma by the effect of the applied electrical field. This reduction in PIC was attributed to the dendritic field-induced differential polarization and the nonlinear current-voltage relationship of the dendritic PIC-mediating channels. Because of the location of the motoneuronal somata and initial segment with respect to the dendrites, these structures were minimally polarized by the applied field compared with the extended dendrites. In conclusion, electrical fields could be used for suppressing the hyperexcitability of spinal motoneurons after SCI and reducing the level of spasticity. 相似文献
5.
H. Hatt J. L. Rosenheimer D. O. Smith 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1995,177(4):503-510
Proton-activated currents were examined in patch-clamp recordings from embryonic chick motoneurons. Rapid application of protons evoked a large inward current that peaked and then decayed, presumably due to channel inactivation. A pH shift from 7.4 to 7.1 was sufficient to evoke detectable currents. The shift from pH 7.4 required for half-maximal current amplitude (EC50) was to pH 6.8. In single-channel recordings, activation was achieved within 6 ms at pH 7. The average channel open time was 1.4 ms; the closed-state time constants were 1.0 and 6.2 ms. At pH 6.5, the single-channel conductance was 22 pS, and the reversal potential was similar to the calculated Na+ equilibrium potential. Current amplitude declined by 49% following addition of Ni2+ and increased by 58% as Ca2+ was lowered from 2 to 0.1 mM. Inactivation time constants ranged from 90 to 200 ms as pH varied from 6 to 7; these values did not depend on membrane potential. The reactivation time constant was 22 s. Proton- and glutamate-activated currents summated. Thus, transient decreases in extracellular pH can evoke large inward currents that decay rapidly and reactivate slowly. These currents may occur under pathological conditions that affect extracellular pH. 相似文献
6.
L. P. Kudina 《Neurophysiology》1987,19(2):164-168
Monosynaptic testing of excitability in firing triceps surae muscle motoneurons activated during volitional contraction was performed using a technique for recording potentials from single motor units and by producing H-reflex. Motoneuronal excitability was assessed according to level of firing index. Motoneuronal firing index decreased during transition from a low background rhythmic firing rate of less than 6 spikes/sec to one of 6–8 spikes/sec. It hardly changed with a further rise in rate to 12 spikes/sec. The dependence between firing index and spike rate are put down to changes occurring in motoneuronal excitability during the interspike interval. Findings indicate that in the low frequency range of motoneuronal firing characteristic of natural muscle contraction, discharge rate may be considered one of the factors determining excitability in the motoneuron and hence its transmission qualities.Institute of Problems in Information Transmission, Academy of Sciences of the USSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 210–216, March–April, 1987. 相似文献
7.
Mechanisms of the effect of stimulation of afferent fibers in ventral roots on dorsal horn interneurons were investigated in experiments on anesthetized cats. Dorsal horn interneurons on which such fibers project were shown to exist. In particular, some dorsal horn interneurons can exert an inhibitory influence on effects of dorsal root fiber activation.Institute of Physiology, Academy of Sciences of the Kazakh SSR, Alma-Ata. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 300–305, May–June, 1985. 相似文献
8.
Van Den Bosch L Verhoeven K De Smedt H Wuytack F Missiaen L Robberecht W 《Life sciences》1999,65(15):1597-1606
Amyotrophic lateral sclerosis is characterized by motoneuron degeneration, in which glutamate-induced cell death is thought to play a pathogenic role. This excitotoxic process is mediated by cytosolic Ca2+ overload. The glutamatergic ionotropic channel molecules, which constitute a major route of Ca2+ entry, were present on cultured spinal motoneurons. Using ratio RT-PCR, the relative presence in isolated motoneurons of the GluR subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor was evaluated. GluR1 and GluR2 mRNAs were present abundantly, while GluR3 and GluR4 mRNAs were much less abundant. The relative amount of mRNAs encoding the different protein isoforms responsible for Ca2+ uptake into the internal stores and for controlled release of Ca2+ from these stores was also determined. For the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), only the SERCA2b class 4 splice variant was found. The inositol 1,4,5-trisphosphate receptor (IP3R) mRNAs were mainly transcribed from the IP3RI and IP3RII genes. Heterogeneity was also observed for the ryanodine receptors (RyR) as the RyR1, RyR2 and RyR3 mRNAs were present. 相似文献
9.
A few axonal proteins distinguish ventral spinal cord neurons from dorsal root ganglion neurons 总被引:3,自引:2,他引:3
下载免费PDF全文

P Sonderegger M C Fishman M Bokoum H C Bauer E A Neale P G Nelson 《The Journal of cell biology》1984,98(1):364-368
A series of proteins putatively involved in the generation of axonal diversity was identified. Neurons from ventral spinal cord and dorsal root ganglia were grown in a compartmented cell-culture system which offers separate access to cell somas and axons. The proteins synthesized in the neuronal cell somas and subsequently transported into the axons were selectively analyzed by 2-dimensional gel electrophoresis. The patterns of axonal proteins were substantially less complex than those derived from the proteins of neuronal cell bodies. The structural and functional similarity of axons from different neurons was reflected in a high degree of similarity of the gel pattern of the axonal proteins from sensory ganglia and spinal cord neurons. Each axonal type, however, had several proteins that were markedly less abundant or absent in the other. These neuron-population enriched proteins may be involved in the implementation of neuronal diversity. One of the proteins enriched in dorsal root ganglia axons had previously been found to be expressed with decreased abundance when dorsal root ganglia axons were co-cultured with ventral spinal cord cells under conditions in which synapse formation occurs (P. Sonderegger, M. C. Fishman, M. Bokoum, H. C. Bauer, and P.G. Nelson, 1983, Science [Wash. DC], 221:1294-1297). This protein may be a candidate for a role in growth cone functions, specific for neuronal subsets, such as pathfinding and selective axon fasciculation or the initiation of specific synapses. The methodology presented is thus capable of demonstrating patterns of protein synthesis that distinguish different neuronal subsets. The accessibility of these proteins for structural and functional studies may contribute to the elucidation of neuron-specific functions at the molecular level. 相似文献
10.
11.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin-HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction. 相似文献
12.
N. I. Gaidai 《Neurophysiology》1978,10(4):286-292
Intracellular recordings were made of synaptic responses of 93 motoneurons in the cervical region of the cat spinal cord to stimulation of the medial longitudinal bundle, the brain-stem reticular formation, the lateral vestibular nucleus of Deiters, and the red nucleus. In response to stimulation of the medial longitudinal bundle and the vestibular nucleus responses in the motoneurons of the distal groups of muscles of the forelimb were predominantly excitatory, whereas in motoneurons of the proximal extensor muscles they were predominantly inhibitory. During stimulation of the red nucleus, excitatory and inhibitory responses were recorded in almost equal numbers of cells regardless of their functional class. Monosynaptic EPSPs appeared in one-fifth of motoneurons in response to stimulation of the medial longitudinal bundle and, in a few cases, to stimulation of the vestibular and red nuclei. Otherwise, during stimulation of these structures polysynaptic responses were recorded in the motoneurons. In 62% of cases postsynaptic potentials arising in response to stimulation of the various suprasegmental structures tested were identical in direction in the same motoneurons. A mutually facilitatory effect was observed during stimulation of different suprasegmental inputs. The results are evidence that interaction between influences of the structures tested takes place largely at the level of spinal interneurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 391–399, July–August, 1978. 相似文献
13.
14.
L Zhang 《Canadian journal of physiology and pharmacology》1990,68(8):1062-1068
Inositol 1,4,5-trisphosphate (IP3) was injected iontophoretically into cat spinal motoneurons in pentobarbital-anaesthetized cats and nonanaesthetized, decerebrate cats. Injections of IP3 induced a long-lasting, reproducible hyperpolarization without consistent change in input resistance. The peak amplitude of post-spike afterhyperpolarization (AHP) was significantly increased by IP3 when the membrane potential was adjusted to the control level. Intracellular injections of Ca2+ chelators, which depressed the Ca2(+)-activated AHP, prevented the IP3-induced long-lasting hyperpolarization, suggesting that IP3 acts by a Ca2(+)-dependent mechanism. Intracellular injections of myo-inositol did not consistently induce hyperpolarizations. Also intracellular injections of Li+, which blocks IP3 catabolism, did not prevent the IP3-evoked hyperpolarization. These data suggest that IP3 itself, rather than its breakdown product myo-inositol, is mainly responsible for the hyperpolarizing effect. Possible mechanisms for the IP3-induced hyperpolarization are discussed. 相似文献
15.
Male Wistar rats aged between 8 and 12 months were injected with 7–8 µl of aqueous L-leucine-14C (specific activity: 12543 megaBq/mM) in the region of the ventral horn at the level of segments L5,6 of the spinal cord. Radioactivity was investigated in 3 mm segments of the ventral roots concerned within 1 h in all series of experiments. Estradiol dipropionate, testosterone propionate, insulin, and small doses of thyroxine were found to accelerate axonal transport of labeled material, while hydrocortisone, large doses of thyroxine, as well as castration and thyroidectomy delayed this process. It was thus concluded that axonal transport is under clear-cut hormonal control.Institute of Gerontology, Academy of Medical Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 459–464, July–August, 1990. 相似文献
16.
17.
18.
In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements. 相似文献
19.
T. Hornby J. McDonagh R. Reinking D. Stuart 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2002,188(5):397-408
The purpose of this study was to develop a scheme for classifying turtle motoneurons, such that their properties could be compared to those of other vertebrate species, including, in particular, the cat. A 130-cell sample of turtle motoneurons was provisionally classified into four groups (1-4) on the basis of a cluster analysis of the cells' intracellularly recorded input resistance, rheobase, and slope of their stimulus current-spike frequency relation. These measurements, using sharp microelectrodes and an in vitro spinal cord slice preparation, were particularly robust. It is argued that the cat counterpart of our turtle type 1, 2, and 3 motoneurons innervate slow-twitch muscle fibers, fast-twitch-oxidative fibers, and fast-twitch-glycolytic fibers, respectively. Our turtle type 4 motoneuron is thought analogous to a particularly high-threshold cat and human cell that innervates highly fatigable fast-twitch muscle fibers in both species. Our turtle type 1 category may include cells that innervate non-twitch muscle fibers, which are found in other non-mammalian vertebrates. To advance comparative spinal cord neurobiology, the present results invite comparison to the motoneurons of other vertebrate species, which have yet to be subjected to similar or other classification procedures. 相似文献
20.
To understand the segmental reiteration of an insect, the serially arranged neuromuscular system of the locust, Schistocerca gregaria, is studied. The ventral muscle system is chosen and its motoneuronal supply is described in the thoracic and pregenital segments. In general, repetitively arranged, similar sets of motoneurons (MNs) supply the ventral muscles of these segments. Common criteria of both topology of muscles and neural features (nerve branches and motoneuronal supply) suggest possible homonomies of the ventral longitudinal muscles and ventral diaphragm of the thoracic and abdominal system. Based on a segment-by-segment analysis, muscle topology and motor supply match, in most instances. There are, however, cases where such a parallelism is missing. In a particular cases the supply of apparently homonomous muscles shifts from one set of MNs to another. In another case, putatively equivalent MNs of different ganglia supply morphologically different muscle structures in the adult animal. Therefore, it becomes apparent that muscles and their supplying MNs are, in principle, independent elements which might be subjected autonomously to ontogenetic processes. As a consequence, in the search for the basic segmental Bauplan depending on homonomous structures, muscles and MNs have to be regarded as separate entities.Abbreviations
A1–6
abdominal ganglion (or neuromere A1–3)
-
AS1–6
abdominal segment 1–6
-
DUM
doisal unpaired median
-
M
muscle (number)
-
MN
motoneuron
-
N
nerve (number)
-
PMN
paramedian nerve
-
T1–3
pro-, meso-, metathoracic ganglion
-
TS1–3
pro-, meso-, metathoracic segment
-
VD
ventral diaphragm
-
VM
ventral muscle 相似文献