首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cells exposed to glucocorticoids at 37 degrees C activated glucocorticoid-receptor complexes (complexes with affinity for nuclei and DNA) are formed after nonactivated complexes. Activation thus appears to be an obligatory physiological process. To investigate this process we have characterized cytoplasmic complexes formed in rat thymocytes at 0 and 37 degrees C. Complexes in cytosols stabilized with molybdate were analyzed by sucrose gradient centrifugation and by chromatography on DNA-cellulose, DEAE-cellulose, and agarose gels. Two major complexes were observed: the nonactivated complex, eluted from DEAE at approximately 200 mM KCl, was formed at 0 and 37 degrees C, gave S20,w = 9.2 S, Stokes radius = 8.3 nm, and calculated Mr = 330,000; the activated complex, eluted from DEAE at approximately 50 mM KCl, appeared only at 37 degrees C, gave S20,w = 4.8 S, Stokes radius = 5.0 nm, and Mr = 100,000. A third, minor complex, probably mero-receptor, which appeared mainly at 37 degrees C, bound to neither DNA nor DEAE, and gave S20,w = 2.9 S, Stokes radius = 2.3 nm, and Mr = 27,000. With three small columns in series (DNA-cellulose, DEAE-cellulose and hydroxylapatite), the three complexes can be separated in 5-10 min. By this method we have examined the stability of complexes under our conditions. We conclude that in intact thymus cells glucocorticoid-receptor complexes occur principally in two forms, nonactivated and activated, and that activation is accompanied by a large reduction in size. The origin of the mero-receptor complex remains uncertain.  相似文献   

2.
The untransformed glucocorticoid receptor of rat thymus cytosol was characterized in the form of its complex with [1,2,4-3H]triamcinolone acetonide by ion-exchange chromatography and by gel filtration and sucrose-density-gradient ultracentrifugation at different ionic strengths. Molybdate (10 mM) was present throughout all experimental procedures and prevented receptor inactivation and degradation as well as transformation. At low ionic strength the molybdate-stabilized steroid-receptor complex was detected as a single highly asymmetric entity with a Stokes radius of 5.85 nm, a sedimentation coefficient of 9.6 S and an apparent molecular weight of 236 000. This form was converted into a smaller, even more asymmetric, form in increasing proportion as the ionic strength was increased. In the presence of 0.4 M-KCl, the smaller form had a Stokes radius of 4.95 nm, a sedimentation coefficient of 4.6 S and an apparent molecular weight of 95 500. It is concluded that the glucocorticoid-receptor complex exists at low ionic strengths as a homodimer or as a heterodimer in which only one subunit possesses a steroid-binding site, and that the process of dissociation into subunits brought about by increasing the ionic strength is a process distinct from, but possibly preceding, the transformation phenomenon responsible for conferring DNA-binding properties on the complex.  相似文献   

3.
Molecular properties of nuclear aromatic hydrocarbon (Ah) receptor from Hepa-1c1c9 (Hepa-1) cells were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Nuclear Ah receptor was obtained by exposing intact cells to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 1 h at 37 degrees C in culture followed by extraction of receptor from nuclei with buffers containing 0.5 M KCl. The nuclear Ah receptor was compared to the cytosolic Ah receptor from the same cells. Under conditions of low ionic strength, the Ah receptor from Hepa-1 cytosol sedimented as a single 9.4 +/- 0.63 S binding peak that had a Stokes radius of 7.1 +/- 0.12 nm and an apparent relative molecular mass of 271,000 +/- 16,000. After prolonged (24 h) exposure to high ionic strength (0.5 M KCl), cytosol labeled with [3H]TCDD exhibited two specific binding peaks. The large form of cytosolic Ah receptor seen under high ionic strength conditions sedimented at 9.4 +/- 0.46 S, had a Stokes radius of 6.9 +/- 0.19 nm, and an apparent Mr 267,000 +/- 15,000. The smaller ligand-binding subunit generated by exposing cytosol to 0.5 M KCl sedimented at 4.9 +/- 0.62 S, had a Stokes radius of 5.0 +/- 0.14 nm, and an apparent Mr 104,000 +/- 12,000. Nuclear Ah receptor, analyzed under high ionic strength conditions, sedimented at 6.2 +/- 0.20 S, had a Stokes radius of 6.8 +/- 0.19 nm, and an apparent Mr 176,000 +/- 7000. Nuclear Ah receptor from rat H4IIE hepatoma cells was analyzed and found to have physicochemical characteristics identical to those of nuclear Ah receptor from the mouse Hepa-1 cells. The molecular mass of Hepa-1 nuclear Ah receptor was found to be statistically different from both the Mr approximately 267,000 cytosolic Ah receptor and the Mr approximately 104,000 subunit which were present in cytosol under high ionic strength conditions. Hepa-1 nuclear Ah receptor could not be converted to a smaller ligand-binding subunit by treatment with alkaline phosphatase, ribonuclease, or sulfhydryl-modifying reagents or prolonged exposure to 1.0 M KCl. Cytosolic Ah receptor from Hepa-1 cells was "transformed" by heating at 25 degrees C in vitro into a form with high affinity for DNA-cellulose. The transformed cytosolic Ah receptor, when analyzed under conditions of high ionic strength, sedimented at approximately 6 S, had a Stokes radius of approximately 6.7 nm, and an apparent Mr approximately 167,000.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Glucocorticoid-receptor complexes in rat thymus cytosol were characterized by gel-filtration chromatography on Agarose A-1.5 m and Sephacryl S-300. Two forms of non-transformed complex were identified at low ionic strength in the presence of molybdate, with Stokes radii of approx 8 nm and 6 nm. The 8 nm molybdate-stabilized form could be converted to the 6 nm form by chromatography on Sephacryl S-300 or Lipidex 1000 or by incubation with dextran-charcoal or phospholipase C, but not by chromatography on Sephadex G-25; none of the treatments promoted receptor transformation. It is suggested that the change in Stokes radius from 8 to 6 nm results from the removal of a lipid factor responsible for maintaining the complex in the 8 nm form.  相似文献   

5.
We have previously shown that the purified or unfractionated cytosolic, activated glucocorticoid receptor of rat liver consists of a polypeptide with a Stokes radius of approximately 6 nm, a sedimentation coefficient of 4S and a molecular mass of approximately 90,000 Daltons. We have confirmed previous observations by other authors that if sodium molybdate is introduced into the cytosol preparation buffer the non-activated glucocorticoid receptor appears as an 8 nm, 9S species with an apparent molecular mass of 330,000 Daltons. In order to study the physicochemical parameters of the glucocorticoid receptor prior to ligand binding, we have used an enzyme-linked immunosorbent assay (ELISA) based on antibodies raised in rabbits against the purified activated glucocorticoid receptor. In isotonic buffer, the non-liganded glucocorticoid receptor was shown to have a Stokes radius of 6 nm in the absence and 8 nm in the presence of molybdate. Furthermore, experimental conditions known to result in activation of the glucocorticoid receptor complex (increased ionic strength, increased temperature) did not lead to activation of the 6 nm non-liganded glucocorticoid receptor as judged from the lack of binding of the treated, non-liganded receptor to DNA-cellulose. The existence of both 6 and 8 nm forms of nonactivated, non-liganded glucocorticoid receptor in vitro suggests that dissociation of an 8 nm form to a 6 nm form, if it occurs in vivo, is probably not the only molecular event constituting the activation of the glucocorticoid receptor.  相似文献   

6.
Molecular properties of cytosolic Ah receptors from livers of Sprague-Dawley rats and C57BL/6N mice were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Analyses were done under conditions of both moderate ionic strength (presence of 0.1 M KCl) and high ionic strength (0.4 M KCl). [3H] 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was used as the radioligand. In conditions of moderate ionic strength the receptor from Sprague-Dawley rat liver sedimented at 8.8 +/- 0.05 S, had a Stokes radius of 7.0 +/- 0.21 nm, and an apparent relative molecular mass (Mr) of 257,000 +/- 7,700. In conditions of high ionic strength the Ah receptor from rat hepatic cytosol dissociated to a [3H]TCDD-binding subunit which sedimented at 5.6 +/- 0.58 S, had a Stokes radius of 5.2 +/- 0.24 nm, and an apparent Mr of 121,000 +/- 5,600. The Ah receptor from liver of C57BL/6N mice, in moderate ionic strength conditions, sedimented at 9.4 +/- 0.54 S, had a Stokes radius of 7.1 +/- 0.12 nm, and an apparent Mr of 277,000 +/- 4,800. Whereas the Ah receptor from rat liver readily dissociated into a [3H]TCDD-binding subunit during brief exposure to 0.4 M KCl, the mouse Ah receptor resisted dissociation. When exposed to 0.4 M KCl for 2 h, the mouse Ah receptor remained at the same molecular size that it had exhibited in moderate ionic strength conditions. Prolonged exposure (16 h) to 0.4 M KCl prior to analysis partially converted the mouse Ah receptor into a smaller [3H]TCDD-binding subunit which sedimented at 4.9 +/- 0.07 S, had a Stokes radius of 5.2 +/- 0.19 nm, and an apparent Mr of 105,000 +/- 3,800. The potency of seven different Ah receptor agonists in competing with [3H]TCDD for specific receptor sites was slightly different in mouse cytosol than in rat cytosol. By criteria of size, response to high ionic strength environments, and ligand binding preferences the mouse and rat Ah receptors appear to be similar but not identical molecular species.  相似文献   

7.
The interaction of the rat hepatic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) with immobilized heparin (heparin-Sepharose) or DNA (DNA-cellulose) has been compared to the polyanionic-binding properties of the rat hepatic glucocorticoid receptor. Both the nonoccupied and in vitro occupied forms of the receptors interacted with heparin-Sepharose but with varying strength, as determined by ligand binding assays or an enzyme-linked immunosorbent assay based on a monoclonal antibody against the steroid- and DNA-binding Mr approximately 94,000 glucocorticoid receptor protein. In the absence of ligand, both the dioxin and glucocorticoid receptors eluted from heparin-Sepharose at 0.1-0.2 M KCl, in contrast to the in vitro occupied receptor forms which eluted at 0.3-0.4 M KCl. Following elution of the in vitro occupied dioxin receptor from heparin-Sepharose, it was efficiently retained on DNA-cellulose and eluted at an ionic strength of approximately 0.2 M KCl. In the presence of 20 mM sodium molybdate which is known to inhibit the activation of steroid hormone receptors to a DNA-binding form, both the dioxin and glucocorticoid receptors eluted at 0.1-0.2 M KCl from heparin-Sepharose. In analogy to what has previously been shown for the glucocorticoid receptor, sodium molybdate stabilized a large dioxin-receptor complex with a sedimentation coefficient, S20,w, of 9-10 S, a Stokes radius of approximately 7.5 nm, and a calculated Mr of 290,000-310,000. Limited proteolysis of both the dioxin and glucocorticoid receptors with trypsin which is known to eliminate the DNA-binding property of both receptor forms also resulted in a decreased strength in the interaction of both in vitro occupied receptors with heparin-Sepharose (elution at 0.1-0.2 M KCl). In line with these data, calf thymus DNA in solution competed for receptor binding to heparin-Sepharose. In conclusion, the chromatographic properties of the dioxin receptor on heparin-Sepharose are indistinguishable from those of the glucocorticoid receptor, and both receptors appear to be structurally and functionally closely related proteins.  相似文献   

8.
Glucocorticoid-receptor complexes in rat thymus cytosol were characterized by gel-filtration and ion-exchange chromatography and by other procedures. Two forms of non-transformed complex were identified at low ionic strength in the presence of molybdate, with Stokes radii of approx. 8 and 6 nm. The 8 nm molybdate-stabilized form could be converted to the 6 nm form by chromatography on Sephacryl S-300 or Lipidex 1000 or by incubation with charcoal or phospholipase C, but not by chromatography on Sephadex G-25. The dissociation rate of the complex was reduced by treatment with charcoal or Lipidex 1000, but none of the treatments caused transformation to a DNA-binding form. Transformation of the complex, by exposure to elevated temperature or ionic strength in the absence of molybdate, resulted in the appearance of a different 6 nm form, distinguished by an increased affinity for DNA-cellulose and a reduced affinity for DEAE-cellulose. These results suggest that receptor transformation is preceded by structural changes associated with the loss of a lipid factor from the complex. Non-polar steroid antagonists, and lipophilic compounds such as phenothiazines, were found to bind to secondary, hydrophobic sites on the receptor and to exert allosteric effects on the primary steroid-binding site; these and other observations emphasize the importance of hydrophobic interactions as determinants of the structure and properties of glucocorticoid receptors.  相似文献   

9.
The molecular properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7 were investigated. The receptor was found to represent a highly asymmetrical molecule with a sedimentation coefficient, s20,w, of approximately 8 S, a Stokes radius of 7-8 nm, and a calculated Mr approximately equal to 260,000-300,000. In comparison, the Hepa 1c1c7 glucocorticoid receptor in analogy to the glucocorticoid receptor in general as well as the C57BL/6 mouse and rat hepatic dioxin receptors are molecules with an s20,w value of 4-5 S, a Stokes radius of approximately 6 nm, and a calculated Mr approximately equal to 100,000. In the presence of 20 mM sodium molybdate, a large Mr approximately equal to 270,000-310,000 form of the Hepa 1c1c7 glucocorticoid receptor is stabilized which is hydrodynamically indistinguishable from the Mr approximately equal to 260,000-300,000 Hepa 1c1c7 dioxin receptor. Sodium molybdate does not have any effect on the molecular properties of the Hepa 1c1c7 dioxin receptor. In conclusion, the large form of dioxin receptor present in Hepa 1c1c7 mouse hepatoma cells in the absence of sodium molybdate is strikingly similar to molybdate-stabilized steroid hormone receptors as well as the molybdate-stabilized form of the dioxin receptor previously demonstrated in rat hepatic cytosol. Therefore, the Hepa 1c1c7 dioxin receptor might offer an interesting model for studies on the structure and function of Mr approximately equal to 300,000 forms of soluble receptors.  相似文献   

10.
The non-transformed, molybdate-stabilized chick oviduct cytosol progesterone receptor was purified approx. 7000-fold using biospecific affinity resin (NADAC-Sepharose), DEAE-Sephacel chromatography and gel filtration on Bio-Gel A-0.5m agarose. The purified preparation contained progesterone receptor which sedimented as a 7.9S molecule, had a Stokes' radius of 7.5 nm, was composed of three major peptides corresponding to Mr 108,000, 90,000 and 79,000. Upon removal of molybdate, the purified [3H]progesterone-receptor complex could be transformed from the 8S form to a 4S form by exposure to 23 degrees C or by an incubation with 10 mM ATP at 0 degrees C. The purified thermally transformed receptor could be adsorbed to columns of ATP-Sepharose. No cytosol factor(s) appeared to be required for the 8S to 4S transformation of purified receptor or for its subsequent binding to ATP-Sepharose. Incubation of purified non-transformed receptor preparation with [gamma-32P]ATP and cAMP-dependent protein kinase led to incorporation of radioactivity in all the three major peptides at serine residues. The results of this study show for the first time that purified 8S progesterone receptor can be phosphorylated in vitro by a cAMP-dependent protein kinase, and that it can be transformed to a 4S form by 0 degrees C incubation with 10 mM ATP.  相似文献   

11.
Androgen receptors (sedimentation value approximately 4S and Stokes radius 2.8 nm) present in the cytoplasmic fraction obtained from prostates of castrated rats bind to DNA-Sepharose and double stranded DNA. A receptor fragment (sedimentation value approximately 3S and Stokes radius 2.3 nm) obtained from rat prostates in the course of a purification procedure showed greatly diminished binding affinity for both DNA-Sepharose and soluble DNA. In contrast, both the 4S cytosol receptor and the 3S receptor form interacted with equal affinity with prostate RNA or poly(UG). These observations provide evidence that for DNA binding a different or additional part of the receptor molecule is required than for RNA and polyribonucleotide binding.  相似文献   

12.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) binds to a specific, high-affinity, low-capacity protein in rat liver cytosol. The TCDD-receptor complex is a large molecule with a Stokes radius of 6.6 nm as determined by gel filtration on calibrated columns. The receptor complex sediments at 5.0 S on glycerol gradients. The calculated molecular weight from the physical parameters was 136 000 and the frictional ratio 1.79.The TCDD-receptor complex binds to DNA-cellulose without preceding heat activation or incubation at high ionic strength. The receptor must first bind TCDD before it can interact with DNA. The DNA-binding ability can be removed from the TCDD receptor by limited proteolysis with trypsin. This treatment does not affect the TCDD-binding site of the receptor. The proteolytic fragment of the TCDD-receptor complex containing the TCDD-binding site but not the ability to bind to DNA appears to be approximately the same size as the native receptor, as judged from chromatography of Sepharose CL-6B and glycerol gradient centrifugation.  相似文献   

13.
Glutathione reductase (NAD(P)H: oxidized-glutathione oxidoreductase, EC 1.6.4.2) was purified to homogeneity from porcine erythrocytes by use of affinity chromatography on 2',5'-ADP-Sepharose 4-B. Analytical ultracentrifugation experiments were analysed to give the following physical parameters for the enzyme: s20,w = 5.7 S, D20,w = 50 microgram2/s, and Mw = 103 000 (protein concentration, 0.5 mg/ml). The frictional ratio was 1.37 and the Stokes radius was 4.3 nm. The enzyme molecule is a dimer composed of subunits of equal size each containing a FAD molecule. The amino acid compositions and circular dichroism spectra of the porcine and human enzymes indicated extensive structural similarities. The isoelectric point was at pH 6.85 (at 4 degrees C). The absorption spectrum of the oxidized enzyme had maxima at 377 and 462 nm. In vivo the enzyme appears to be partially reduced. At a physiological concentration of reduced glutathione the apparent Michaelis constants for glutathione disulfide and NADPH were higher than in the absence of reduced glutathione. At 0.15 M ionic strength the catalytic activity obtained with NADPH as reductant was optimal at pH 7 and more than 200 times higher than that obtained with NADH. S-sulfoglutathione and some mixed disulfides of glutathione were poor substrates with the exception of the mixed disulfide of coenzyme A and reduced glutathione. The purified enzyme displayed low transhydrogenase activity with oxidized pyridine nucleotide analogs and diaphorase activity with 2,6-dichlorophenolindophenol as acceptor substrates; both NADPH and NADH served as donors.  相似文献   

14.
Physicochemical properties of native and activated (DNA-binding) forms of the glucocorticoid receptor in cytosol prepared from lactating goat mammary tissue have been examined. Under hypotonic conditions the cytosolic receptor sediments at 8.4 S or 9.9 S in the absence or presence of 10 mM molybdate, respectively. The receptor in cytosol, either with or without molybdate elutes from DEAE-cellulose at approximately 200 mM potassium phosphate concentration. Isoelectric focusing reveals that this form of the receptor focuses at pH 5.5. Further, the cytosolic form of the receptor exhibits minimal binding affinity for polyanions such as DNA-cellulose. Its Stokes radius is 77 A and the mol. wt is approximately 331,000. Following exposure to in vitro activating conditions (including elevated ionic strength or temperature), the liganded receptor exhibits much lower affinity for DEAE-cellulose (elution at 35-55 mM potassium phosphate concentration). Other alterations in properties of the activated receptor, after partial purification, include sedimentation at 3.9 S in hypotonic sucrose gradients, binding to polyanions (DNA-cellulose), and an isoelectric point at pH 7.2. This receptor has a Stokes radius of 58 A and a mol wt of 98,000. A degraded form, with a mol. wt of approximately 57,000 and high affinity for polyanions, was the major form of the receptor obtained if appropriate precautions to prevent or remove proteolytic activity were not observed during purification and/or characterization of the activated receptor.  相似文献   

15.
The highest molecular weight form of the calf uterine androgen receptor separates as an 11S form in glycerol gradients. This "cytosolic" receptor, prepared in the presence of molybdate, polyethyleneimide and low ionic strength, dissociates into 9S and 7.2S forms with increasing KCl concentration. A 4.5S androgen binding component appears as the predominant form of the receptor in the absence of polyethyleneimide and this unit quantitatively converts to a stable 3.5S form in the absence of molybdate. Renaturation of partially purified protein, separated by SDS-PAGE electrophoresis, demonstrates the presence of an androgen binding component in the 110 kDa region of the gel. This renatured protein separates as a 4.5S component in glycerol gradients and has a Stokes radius of 6 nm. Photoaffinity labelling of partially purified receptor preparations, followed by SDS-PAGE electrophoresis, reveals the presence of an androgen binding component having a molecular weight of 115 kDa. The binding characteristics and specificity of the receptor binding to R1881 have been studied and a DHT-affinity chromatography resin used to purify the receptor.  相似文献   

16.
Properties of talin from chicken gizzard smooth muscle   总被引:9,自引:0,他引:9  
This paper describes the structural and biochemical characterization of talin, a protein localized to various cellular sites where bundles of actin filaments attach to the plasma membrane. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein has a molecular mass of 225,000 +/- 5,000 daltons. Hydrodynamic measurements at protein concentrations less than 0.72 mg/ml indicate a monomeric protein with a native molecular mass of 213,000 +/- 15,000 daltons. Sedimentation equilibrium experiments indicate self-association at protein concentrations of 0.72 mg/ml and higher. The data suggest that this self-association is a simple monomer:dimer equilibrium over the range of concentrations observed. At low protein concentrations where talin is a monomer, the Stokes radius and sedimentation coefficient vary with ionic strength. Under low ionic strength conditions (5-20 mM NaCl), talin has a Stokes radius of 6.5 nm and a sedimentation value of 9.4, suggesting an asymmetric globular molecule; whereas under high ionic strength conditions (200 mM NaCl), the Stokes radius increases to 7.7 nm and the sedimentation coefficient decreases to 8.8, suggesting a more elongated protein. This conformation change is confirmed by electron microscopy which reveals a more globular protein at low ionic strength which unfolds to become an elongated flexible molecule as the ionic strength is increased to physiological and higher levels. The amino acid composition of talin indicates a low level of aromatic residues, consistent with its relatively low extinction coefficient, talin has an isoelectric point between pH 6.7 and 6.8 based on isoelectric focusing. The detailed purification of talin is described.  相似文献   

17.
A magnesium-dependent protein kinase activity was copurified with both the molybdate-stabilized 8S form of the chick oviduct progesterone receptor (PR) and its B subunit. In each case, purification was performed by hormonal affinity chromatography followed by ion-exchange chromatography. The Km(app) values of the phosphorylation reaction for [gamma-32P]ATP and calf thymus histones were approximately 1.3 X 10(-5) M and approximately 1.6 X 10(-5) M, respectively, and only phosphorylated serine residues were found in protein substrates, including PR B subunit. Physicochemical parameters of the enzyme [pI approximately 5.3, Stokes radius approximately 7.2 nm, sedimentation coefficient (S20,w) approximately 5.6 S, and Mr approximately 200,000] were compared to those of purified forms of PR (B subunit, pI approximately 5.3, Stokes radius approximately 6.1 nm, and Mr approximately 110,000; 8S form, Stokes radius approximately 7.7 nm and Mr approximately 240,000). The results suggest that most of the protein kinase activity copurified with both oligomeric and monomeric forms of PR belongs to an enzyme distinct from currently known receptor components. Its physiological significance remains unknown.  相似文献   

18.
Accumulation of 3H-dexamethasone by the nuclei in a cell-free system was studied. The increase in temperature from 0 degrees to 20 degrees C and treatment of cytosol by KCl (0.4 M) or theophylline (10mM) significantly increased the absorption the bound hormone by the nuclear fraction. Activation of the steroid-protein complex induced by temperature and addition of theophylline did not change its size. The increase in the ionic strength decreased the Stokes radius from 53 A down to 39.5 A and the sedimentation coefficient value from 7S down to 4S. It is concluded that the heart tissue cytoplasm contains a glucocorticoid receptor.  相似文献   

19.
A full-length Caenorhabditis elegans cDNA that encodes the alpha subunit of casein kinase II was inserted into the inducible bacterial expression vector pET3a to generate the plasmid pCK alpha. Escherichia coli DE21 lysozyme S that was transformed with pCK alpha expressed soluble, catalytically active casein kinase II alpha upon induction with isopropyl beta-D-thiogalactopyranoside. The expressed alpha subunit was purified to homogeneity with a 60% yield by chromatography on CM-Sephadex, P-11 phosphocellulose, and heparin-agarose. The Mr values estimated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 42,000) or calculated from hydrodynamic measurements (s20,w = 3.3 S, Stokes radius = 2.8 nm, Mr = 37,000) were similar, thereby indicating that the expressed enzyme is monomeric. The native holoenzyme and the expressed alpha subunit exhibited several similar properties including the utilization of both ATP and GTP as substrates and the susceptibility to inhibition of phosphotransferase activity by low concentrations of heparin. However, the kcat for E. coli-derived alpha was only 9% of the kcat for the native holoenzyme, and catalytic activity was not stimulated by polyamines. Recombinant casein kinase II alpha aggregates at low ionic strength, and the aggregation is partially reversible. A mutant alpha subunit in which Lys74 and Lys75 were substituted by glutamic acid residues was constructed by site-directed mutagenesis. The mutant enzyme was not inhibited by typically effective concentrations of heparin (e.g. IC50 = 0.3 micrograms/ml) because the affinity of modified recombinant casein kinase II Glu-74Glu-75 for heparin decreased approximately 70-fold. Thus, Lys74 and Lys75 are implicated in the heparin binding, inhibitory domain. The successful expression of casein kinase II alpha in E. coli will facilitate the analysis of the structural basis for functional domains in this enzyme.  相似文献   

20.
Limited tryptic hydrolysis of the estradiol cytoplasmic receptor from calf uterus has been demonstrated to yield in a high-salt buffer a stable estradiol-binding molecule with the following characteristics: sedimentation coefficient 4.0 +/- 0.1 S; Stokes radius 3.5 +/- 0.05 nm; molecular weight 60000 (for an assumed v value of 0.73 ml g-1) and frictional ratio 1.36. Nuclear KCl extracts, prepared from uteri preincubated at 37 degrees C with labeled estradiol, were analysed by Sephadex G-200 chromatography and sucrose density gradient centrifugation. The following molecular parameters were found for the estradiol-receptor complex: sedimentation coefficient 4.4 +/- 0.1 S; Stokes radius 4.12 +/- 0.02 nm; molecular weight 77000 and frictional ratio 1.47 (v = 0.73 ml g-1). Limited tryptic proteolysis of this extract gave an estradiol-binding fragment with molecular characteristics identical to the trypsin-modified cytoplasmic receptor. In addition, mild tryptic digestion of whole labeled nuclei allowed us to solubilize almost quantitatively the nuclear [3H]estradiol in a macromolecular bound form. The molecule thus obtained showed molecular parameters very similar to the 60000-dalton trypsin fragments obtained from high-salt cytoplasmic and nuclear extracts. These molecules were undistinguishable by gel electrophoresis analysis at six different acrylamide concentrations. These results in conjunction with those derived from dissociation kinetics experiments and ligand specificity studies indicate the cytosolic protein is a functional part of the nuclear receptor. Based upon these and other studies we suggest that proteolytic cleavage of the estradiol-receptor complex, which results in the removal of the estradiol-binding sites from the nuclear recognition sites of the molecule, could play a role in the inactivation of the estradiol receptor in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号