首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
T-cell death-associated gene 51 (TDAG51) has been described to regulate T-cell receptor/CD3-dependent induction of CD95/Fas and subsequent activation-induced cell death (AICD) in a murine T-cell hybridoma. Using well-defined pharmacological inhibitors, we investigated the regulation of TDAG51 expression in human T-cells and the correlation with cell death. TDAG51 was induced in resting T-cells, lymphoid cell lines and AICD-susceptible as well as AICD-resistant T-cell clones, and induction was inhibited by MAP-kinase inhibitors and PKC inhibitor G?6983. No correlation between the effects of inhibitors on TDAG51 expression and cell death was observed. The constitutive TDAG51 expression in five pancreatic carcinoma cell lines was reduced by MAP-kinase inhibitors but not by G?6983. Furthermore, the inducible overexpression of TDAG51 in TetOn Jurkat cells did not modulate cellular proliferation, phorbolester/ionomycin-induced growth arrest, or the expression of various cell surface molecules. Our results indicate that the expression of TDAG51 in human T-cells does not correlate with AICD.  相似文献   

2.
3.
4.
The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage.TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice.During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice.Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.  相似文献   

5.
6.
Regulation of Fas ligand-induced apoptosis by TNF.   总被引:7,自引:0,他引:7  
Fas ligand (FasL, CD95L) expression helps control inflammatory reactions in immune privileged sites such as the eye. Cellular activation is normally required to render lymphoid cells sensitive to FasL-induced death; however, both activated and freshly isolated Fas(+) lymphoid cells are efficiently killed in the eye. Thus, we examined factors that might regulate cell death in the eye. TNF levels rapidly increased in the eye after the injection of lymphoid cells, and these cells underwent apoptosis within 24 h. Coinjection of anti-TNF Ab with the lymphoid cells blocked this cell death. Furthermore, TNFR2(-/-) T cells did not undergo apoptosis in the eyes of normal mice, while normal and TNFR1(-/-) T cells were killed by apoptosis. In vitro, TNF enhanced the Fas-mediated apoptosis of unactivated T cells through decreased intracellular levels of FLIP and increased production of the pro-apoptotic molecule Bax. This effect was mediated through the TNFR2 receptor. In vivo, intracameral injection of normal or TNFR1(-/-) 2,4,6-trinitrophenyl-coupled T cells into normal mice induced immune deviation, but TNFR2(-/-) 2,4,6-trinitrophenyl-coupled T cells were ineffective. Collectively, our results provide evidence of a role for the p75 TNFR in cell death in that TNF signaling through TNFR2 sensitizes lymphoid cells for Fas-mediated apoptosis. We conclude that there is complicity between apoptosis and elements of the inflammatory response in controlling lymphocyte function in immune privileged sites.  相似文献   

7.
Insulin-like growth factor-I (IGF-I) receptors and insulin receptors belong to the same subfamily of receptor tyrosine kinases and share a similar set of intracellular signaling pathways, despite their distinct biological actions. In the present study, we evaluated T cell death-associated gene 51 (TDAG51), which we previously identified by cDNA microarray analysis as a gene specifically induced by IGF-I. We characterized the signaling pathways by which IGF-I induces TDAG51 gene expression and the functional role of TDAG51 in IGF-I signaling in NIH-3T3 (NWTb3) cells, which overexpress the human IGF-I receptor. Treatment with IGF-I increased TDAG51 mRNA and protein levels in NWTb3 cells. This effect of IGF-I was specifically mediated by the IGF-IR, because IGF-I did not induce TDAG51 expression in NIH-3T3 cells overexpressing a dominant-negative IGF-I receptor. Through the use of specific inhibitors of various protein kinases, we found that IGF-I induced TDAG51 expression via the p38 MAPK pathway. The ERK, JNK, and phosphatidylinositol 3-kinase pathways were not involved in IGF-I-induced regulation of TDAG51. To assess the role of TDAG51 in IGF-I signaling, we used small interfering RNA (siRNA) expression vectors directed at two different target sites to reduce the level of TDAG51 protein. In cells expressing these siRNA vectors, TDAG51 protein levels were decreased by 75-80%. Furthermore, TDAG51 siRNA expression abolished the ability of IGF-I to rescue cells from serum starvation-induced apoptosis. These findings suggest that TDAG51 plays an important role in the anti-apoptotic effects of IGF-I.  相似文献   

8.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

9.
Chronic kidney disease (CKD) is characterized by the gradual loss of renal function and is a major public health concern. Risk factors for CKD include hypertension and proteinuria, both of which are associated with endoplasmic reticulum (ER) stress. ER stress-induced TDAG51 protein expression is increased at an early time point in mice with CKD. Based on these findings, wild-type and TDAG51 knock-out (TDKO) mice were used in an angiotensin II/deoxycorticosterone acetate/salt model of CKD. Both wild-type and TDKO mice developed hypertension, increased proteinuria and albuminuria, glomerular injury, and tubular damage. However, TDKO mice were protected from apoptosis and renal interstitial fibrosis. Human proximal tubular cells were used to demonstrate that TDAG51 expression induces apoptosis through a CHOP-dependent mechanism. Further, a mouse model of intrinsic acute kidney injury demonstrated that CHOP is required for ER stress-mediated apoptosis. Renal fibroblasts were used to demonstrate that TGF-β induces collagen production through an IRE1-dependent mechanism; cells treated with a TGF-β receptor 1 inhibitor prevented XBP1 splicing, a downstream consequence of IRE1 activation. Interestingly, TDKO mice express significantly less TGF-β receptor 1, thus, preventing TGF-β-mediated XBP1 splicing. In conclusion, TDAG51 induces apoptosis in the kidney through a CHOP-dependent mechanism, while contributing to renal interstitial fibrosis through a TGF-β-IRE1-XBP1 pathway.Subject terms: Endoplasmic reticulum, Apoptosis, End-stage renal disease, Preclinical research, Chronic inflammation  相似文献   

10.
Fas play a critical role in T-cell apoptosis by functioning as a major cell-surface death receptor. To explore a potential method that can improve the sensitivity to Fas-mediated apoptosis in malignant precursor T-cells. Fas gene was stable transfected into Jurkat cells to establish a new cell line named Jurkat-Fas with over-expressed Fas. RT-PCR, real-time RT-PCR, flow cytometry, and confocal microscopy assay were performed to detect the Fas level of mRNA and protein in the two cell lines. The sensitivities to Fas-mediated apoptosis of the two cell lines were evaluated by flow cytometry with Alexa Fluor 488 annexin V/PI staining in vitro. Tumor xenograft models were prepared with Jurkat and Jurkat-Fas cells for in vivo study. Fas mRNA and protein levels in Jurkat-Fas cell line were higher than that in Jurkat cell line. Compared to Jurkat cells, apoptosis rates of Jurkat-Fas cells were remarkably higher in vitro, and the tumor growth of Jurkat-Fas cells in nude mice was significantly inhibited in vivo. Stable over-expression of extrinsic Fas gene can significantly ameliorate the sensitivity to Fas-mediated apoptosis in human malignant T-cell, which indicates a novel strategy to improve therapeutic effects on precursor T-cell malignancy.  相似文献   

11.
Both CD4+ and CD8+ T cells from mice infected with Mycobacterium avium suffered a high rate of apoptosis, beginning with the onset of the immune response and culminating in the loss of T cells from the tissues and loss of IFN-gamma production. Fas expression increased over the course of infection on both T cell populations, as did their susceptibility to the induction of apoptosis in vitro by anti-Fas mAb. Nevertheless, although the rate of apoptosis among CD4+ T cells from infected mice was reduced to normal levels in lpr mice with a defective Fas, CD8+ T cells were unaffected, implying that Fas/FasL interaction was not important in these cells in vivo. Conversely, over-expression of B-cell lymphoma-2 (Bcl-2), which is known to protect T cells from apoptosis signalled through the TNF receptor or due to the withdrawal of cytokines, totally protected CD8+ T cells from infected mice but had no effect on CD4+. It is of interest that these two contrasting pathways of T-cell apoptosis operate at the same time during a single infection.  相似文献   

12.
13.
Inappropriate activation of p34cdc2 kinase has been shown to occur during apoptosis induced by cytotoxic T-cell derived perforin and fragmentin. We analysed the effect of two inhibitors of p34cdc2 kinase on alloreactive Tc-cell-mediated lysis and DNA fragmentation of P815 and L1210 target cells. Olomoucine, a specific inhibitor of cyclin dependent kinases, did not affect DNA fragmentation in the target cells. Lysis of olomoucine-treated target cells as assessed by 51Cr release over a typical 8-h period was also unaffected. We also examined the effects of thapsigargin on target cell death. This toxin causes increased intracellular calcium rises that then result in irreversible inhibition of cyclin dependent kinases, including p34cdc2 kinase. The same extent of specific cell lysis was induced by cytotoxic T cells from perforin(-/-), granzyme B(-/-), granzyme A(-/-), perforin(-/-) X granzymeB(-/-) X granzymeA(-/-) KO mice or normal mice in untreated target cells or target cells treated with either olomoucine or thapsigargin. Similarly DNA fragmentation measured by release of tritiated DNA was also unaffected. Thus inhibition of p34cdc2 kinase affects neither the Fas nor the perforin/granzyme pathways of alloreactive cytotoxic T-cell killing as measured by DNA fragmentation or chromium release. P815 cells treated with olomoucine were arrested in the cell cycle after 12-16 h exposure to the toxin. After cell cycle arrest, target cells now showed enhanced 51Cr release induced by effector cytotoxic T cells (CTL) derived from perforin(-/-) mice compared to untreated cells. This lysis was accompanied by an increase in cell surface Fas expression. Olomoucine induced cell cycle arrest and expression of Fas was reversible and when cells re-entered the cell cycle, surface expression of Fas was lost.  相似文献   

14.
Bonzon C  Fan H 《Journal of virology》2000,74(17):8151-8158
Moloney murine leukemia virus (M-MuLV) is a replication-competent, simple retrovirus that induces T-cell lymphomas when inoculated into neonatal mice. The tumor cells are typically derived from immature T cells. During preleukemic times, a marked decrease in thymic size is apparent in M-MuLV-inoculated mice. We previously demonstrated that this thymic regression is correlated with enhanced levels of thymocyte apoptosis (C. Bonzon and H. Fan, J. Virol. 73:2434-2441, 1999). In this study, we investigated the apoptotic state of M-MuLV-induced tumors. M-MuLV-induced tumors were screened for expression of the apoptotic proteins Fas and Bcl-2 by three-color flow cytometric analysis. Single-positive (SP; CD4(+) CD8(-) and CD4(-) CD8(+)) tumor cells generally displayed lower cell surface expression of Fas than SP thymocytes from uninoculated control mice. Double-positive (DP; CD4(+) CD8(+)) M-MuLV-induced tumor cells fell into two categories: those with normal high levels of Fas and those with low levels of Fas. Additionally, the vast majority of DP tumors showed elevated Bcl-2 levels. The DP tumor cells retaining normal/high Fas expression were capable of transducing an apoptotic signal upon anti-Fas engagement. In addition, DP and CD4(+) SP tumor populations displayed higher levels of Fas ligand than normal thymocytes with the same phenotypes. In contrast, CD8(+) SP and CD4(-) CD8(-) tumors did not show elevated Fas ligand expression. There was no significant correlation between Fas and Fas ligand expression in the DP tumors, suggesting that Fas Ligand expression was not the driving force behind Fas down-regulation. These results suggest that both the Fas death receptor and mitochondrial pathways of apoptotic death are active in M-MuLV-induced tumors and that they must be modulated to permit cell survival and tumor outgrowth.  相似文献   

15.
16.
Kit and its ligand stem cell factor (SCF) play a fundamental role in hematopoiesis, melanogenesis and gametogenesis. Homozygous W(v) mutant mice with a mutation in kit show abnormalities in these cell lineages. Fas is a member of the death receptor family inducing apoptosis. In this study, we generated double-mutant mice (W(v)/W(v):Fas(-/-)) and analyzed histologically their reproductive organs. In testes and ovaries of the double-mutant mice, testicular germ cells and oocytes were detected, respectively, whereas the same-aged W(v)/W(v) mice contained neither cells. In addition, inhibition of Kit signals by administration of anti-Kit mAb, which induces degeneration of testicular germ cells in vivo in wild-type mice, did not cause degeneration in Fas-deficient mice. In testicular germ cells of W(v)/W(v) mutant mice, an increase of Fas expression was observed in spermatogonia. Further, in vitro treatment with SCF was shown to downregulate Fas on fibroblasts expressing exogenous Kit through activation of PI3-kinase/Akt. All the results clearly indicate that Fas-mediated apoptosis is involved in germ cell degeneration accompanied by defects in Kit-mediated signals, and Kit signaling negatively regulates Fas-mediated apoptosis in vivo.  相似文献   

17.
Fas(lpr) (lpr) and Fas(lprcg) (lpr(cg)) are allelic mutations of the Fas gene that is involved in apoptosis or programmed cell death. Lpr greatly reduces the expression of functional Fas and lpr(cg) expresses the death domain-disabled, non-functional Fas on the cell surface. C3H/HeJ mice congenic for lpr(cg) (C3H-lpr(cg)) were established and compared with C3H/HeJ-lpr/lpr (C3H-lpr) mice for their immunological and pathological features. Lymphadenopathy, splenomegaly, development of CD4- CD8- B220+ or double-negative (DN) T cells, renal pathology, and lymphoid cell infiltration in the lung and liver were not significantly different between C3H-lpr(cg) and C3H-lpr mice. Noticeably, however, the production of serum immunoglobulin, autoantibodies against double-strand DNA and serum immune complexes were significantly lower in C3H-lpr(cg) than in C3H-lpr mice. The results indicate that the death signal through the death domain of Fas is responsible for lymphoproliferation due to the accumulation of DN T cells and suggest that the region of Fas outside the death domain may be involved in autoantibody production. The newly-developed congenic C3H-lpr(cg) mice will provide a powerful tool for research into the function of Fas apart from apoptosis.  相似文献   

18.
19.
The importance of lymphotoxin alpha (LTalpha) in lymphoid organogenesis is well established. Although LTalpha has been implicated in the pathogenesis of T-cell-mediated immunopathologies, the requirement for LTalpha in T-cell activation and effector function in vivo is not well understood. To determine the role of LTalpha in T-cell activation in vivo, we compared the generation of antigen-specific T-cell responses between wild type (+/+) and LTalpha-deficient (LTalpha(-/-)) mice during an acute infection with lymphocytic choriomeningitis virus (LCMV). Our studies showed that LCMV-infected LTalpha(-/-) mice had a profound impairment in the activation and expansion of virus-specific CD8 T cells in the spleen, as determined by cytotoxicity assays, intracellular staining for gamma interferon, and staining with major histocompatibility complex class I tetramers. Further, the nonlymphoid organs of LTalpha(-/-) mice also contained substantially lower number of LCMV-specific CD8 T cells than those of +/+ mice. Greatly reduced virus-specific CD8 T-cell responses in LTalpha(-/-) mice led to a defect in LCMV clearance from the tissues. In comparison to that in +/+ mice, the activation of LCMV-specific CD4 T cells was also significantly attenuated in LTalpha(-/-) mice. Adoptive transfer experiments were conducted to determine if abnormal lymphoid architecture in LTalpha(-/-) mice caused the impairment in the activation of LCMV-specific T-cell responses. Upon adoptive transfer into +/+ mice, the activation and expansion of LCMV-specific LTalpha(-/-) T cells were restored to levels comparable to those of +/+ T cells. In a reciprocal cell transfer experiment, activation of +/+ T cells was significantly reduced upon transfer into LTalpha(-/-) mice. These results showed that impairment in the activation of LCMV-specific T cells in LTalpha(-/-) mice may be due to abnormal lymphoid architecture and not to an intrinsic defect in LTalpha(-/-) T cells.  相似文献   

20.
The LMO2 gene encodes a LIM-only protein and is a target of chromosomal translocations in human T-cell leukemia. Recently, two X-SCID patients treated by gene therapy to rescue T-cell lymphopoiesis developed T-cell leukemias with retroviral insertion into the LMO2 gene causing clonal T-cell proliferation. In view of the specificity of LMO2 in T-cell tumorigenesis, we investigated a possible role for Lmo2 in T-lymphopoiesis, using conditional knockout of mouse Lmo2 with loxP-flanked Lmo2 and Cre recombinase alleles driven by the promoters of the lymphoid-specific genes Rag1, CD19, and Lck. While efficient deletion of Lmo2 was observed, even in the earliest detectable lymphoid cell progenitors of the bone marrow, there was no disturbance of lymphopoiesis in either T- or B-cell lineages, and in contrast to Lmo2 transgenic mice, there were normal distributions of CD4- CD- thymocytes. We conclude that there is no mandatory role for LMO2 in lymphoid development, implying that its specific role in T-cell tumorigenesis results from a reprogramming of gene expression after enforced expression in T-cell precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号