首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wu B  Nara K  Hogetsu T 《Mycorrhiza》2002,12(2):83-88
Seedlings of Pinus densiflora colonized by an unidentified ectomycorrhizal fungus (T01) were labelled photosynthetically with 14C. Movement of 14C-labelled photosynthates within the underground part of the seedlings was investigated by temporal autoradiography using an imaging plate. Within 1 day, 14C was transferred from the shoot to the underground part that included roots, mycorrhizae, and the extraradical mycelium; within 3 days, the 14C in the underground part reached its maximum density. Mycorrhizae and actively growing root tips were large C sinks. Three days after 14C labelling, counts of 14C radioactivity in the underground part of the mycorrhizal seedlings were 2.6 times those of nonmycorrhizal seedlings. The mycorrhizae of mycorrhizal plants accumulated 5.2 times the 14C counts in the short-root tips of nonmycorrhizal plants. 14C counts in various areas of the extraradical mycelium demonstrated that all 14C-photosynthate transfer from the host root to the extraradical mycelium occurred within 3 days after 14C labelling, and that there was only a short lag of < 1 day between 14C accumulation in the basal and distal parts of the mycelium. Although more 14C accumulated in the distal than in the basal parts, 14C counts per unit hyphal biomass were similar between the two. These results suggest that 14C spread rapidly throughout the entire mycelium. Thirteen days after 14C labelling, we estimated 14C allocation to extraradical mycelia by taking autoradiographs after removing host roots. About 24% of 14C counts in the underground part of the mycorrhizal seedlings had been allocated to extraradical mycelia in this system, indicating that the fugal mycelium is an important sink for photosynthates.  相似文献   

2.
Different methods to inoculate seedlings of Pinus pinaster and P. sylvestris with edible Lactarius species under standard greenhouse conditions were evaluated. Fungal inoculations were performed both under pure culture synthesis in vitro, followed by transplantation of acclimatized seedlings, and directly in the greenhouse using different techniques for inocula production (mycelial slurries, vegetative inoculum grown in peat-vermiculite and alginate-entrapped mycelium). In vitro inoculations with L. deliciosus produced thoroughly colonized seedlings. However, a sharp decrease in mycorrhizal colonization was detected on transplanted seedlings after 4 month's growth in the greenhouse. On the other hand, all the inocula applied directly in the greenhouse, except the alginate-entrapped mycelium, produced a variable number of mycorrhizal seedlings and colonization rates after the first growing season, depending on the plant-fungal combination and the inoculation method. Inoculations with vegetative inocula of the strain 178 of L. deliciosus were the most effective in producing mycorrhizal seedlings. All the seedlings inoculated with this strain were colonized although the colonization rates were relatively low. The commercial feasibility of the different inoculation methods for the production of seedlings colonized with edible Lactarius species is discussed.  相似文献   

3.
Parladé J  Pera J  Luque J 《Mycorrhiza》2004,14(3):171-176
Different methods to inoculate seedlings of Pinus pinaster and P. sylvestris with edible Lactarius species under standard greenhouse conditions were evaluated. Fungal inoculations were performed both under pure culture synthesis in vitro, followed by transplantation of acclimatized seedlings, and directly in the greenhouse using different techniques for inocula production (mycelial slurries, vegetative inoculum grown in peat-vermiculite and alginate-entrapped mycelium). In vitro inoculations with L. deliciosus produced thoroughly colonized seedlings. However, a sharp decrease in mycorrhizal colonization was detected on transplanted seedlings after 4 month's growth in the greenhouse. On the other hand, all the inocula applied directly in the greenhouse, except the alginate-entrapped mycelium, produced a variable number of mycorrhizal seedlings and colonization rates after the first growing season, depending on the plant-fungal combination and the inoculation method. Inoculations with vegetative inocula of the strain 178 of L. deliciosus were the most effective in producing mycorrhizal seedlings. All the seedlings inoculated with this strain were colonized although the colonization rates were relatively low. The commercial feasibility of the different inoculation methods for the production of seedlings colonized with edible Lactarius species is discussed.  相似文献   

4.
Sweet potato plants were grown with or without Glomus intraradices in split-root pots with adjacent root compartments containing a soil with a low availability of phosphate. One fungal tube, from which root growth was excluded, was inserted into each root compartment. During 4 weeks before harvest, the soil moisture level in either both or only one of the two root-compartments of each pot was decreased. Controls remained well watered. Low soil moisture generally had a negative effect on the amount of extraradical mycelium of G. intraradices extracted from the fungal tubes. Sporulation in the fungal tubes was much higher compared with the soil in the root compartment, but remained unaffected by the soil moisture regime. Concentrations of P in extraradical mycelium were much lower than usually found in plants and fungi, while P concentrations in associated mycorrhizal host plant tissues were in an optimum range. This suggests efficient transfer of P from the extraradical mycelium to the host plant. Despite the negative effect of a low soil moisture regime on extraradical G. intraradices development, the symbiosis indeed contributed significantly to P uptake of plants exposed to partial rootzone drying. The possibility that extraradical arbuscular mycorrhizal fungal development was limited by P availability under dry soil conditions is discussed.  相似文献   

5.
AIMS: This study investigates how autochthonous micro-organisms [bacterium and/or arbuscular mycorrhizal (AM) fungi] affected plant tolerance to Zn contamination. METHODS AND RESULTS: Zinc-adapted and -nonadapted Glomus mosseae strains protected the host plant against the detrimental effect of Zn (600 microg g(-1)). Zn-adapted bacteria increased root growth and N, P nutrition in plants colonized by adapted G. mosseae and decreased the specific absorption rate (SAR) of Cd, Cu, Mo or Fe in plants colonized by Zn-nonadapted G. mosseae. Symbiotic structures (nodule number and extraradical mycelium) were best developed in plants colonized by those Zn-adapted isolates that were the most effective in increasing plant Zn tolerance. The bacterium also increased the quantity and quality (metabolic characteristics) of mycorrhizal colonization, with the highest improvement for arbuscular vitality and activity. Inocula also enhanced soil enzymatic activities (dehydrogenase, beta-glucosidase and phosphatase) and indol acetic acid (IAA) accumulation, particularly in the rhizosphere of plants inoculated with Zn-adapted isolates. CONCLUSIONS: Glomus mosseae strains have a different inherent potential for improving plant growth and nutrition in Zn-contaminated soil. The bacterium increased the potential of mycorrhizal mycelium as inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: Mycorrhizal performance, particularly that of the autochthonous strain, was increased by the bacterium and both contributed to better plant growth and establishment in Zn-contaminated soils.  相似文献   

6.
We investigated the functional significance of extraradical mycorrhizal networks produced by geographically different isolates of the arbuscular mycorrhizal fungal (AMF) species Glomus mosseae and Glomus intraradices. A two-dimensional experimental system was used to visualize and quantify intact extraradical mycelium (ERM) spreading from Medicago sativa roots. Growth, phosphorus (P) and nitrogen (N) nutrition were assessed in M. sativa plants grown in microcosms. The AMF isolates were characterized by differences in extent and interconnectedness of ERM. Phenotypic fungal variables, such as total hyphal length, hyphal density, hyphal length per mm of total or colonized root length, were positively correlated with M. sativa growth response variables, such as total shoot biomass and plant P content. The utilization of an experimental system in which size, growth rate, viability and interconnectedness of ERM extending from mycorrhizal roots are easily quantified under realistic conditions allows the simultaneous evaluation of different isolates and provides data with a predictive value for selection of efficient AMF.  相似文献   

7.
 Root samples of 37 species distributed on the beach and along a successional gradient (from mobile to stabilized areas) in a tropical sand dune system on the Gulf of Mexico showed that 97% of the species were mycorrhizal. The mycorrhizal inoculum potential of the sand from several dune areas was compared using two different bioassays. Firstly, the field rate of colonization by arbuscular mycorrhizal fungi of Chamaecrista chamaecristoides seedlings transplanted to random plots in the foredunes and in the mobile area was measured. The seedlings were harvested at intervals during 3 weeks to record mycorrhizal structures. In the mobile area, no mycorrhizal colonization was observed during the experiment. In the foredunes, hyphae and external mycelium were present in 40% of the seedlings as early as 8 days after transplanting. After 15 days, arbuscules and vesicles were observed in 60 and 20% of the seedlings, respectively, and after 21 days, 100, 46 and 20% of the seedlings showed hyphae, arbuscules and vesicles, respectively. Secondly, maize seedlings were transplanted to pots previously filled with sand from the foredunes, mobile dunes, grassland and a Dyphisa robinoides shrub area. After 1 month, the lowest mycorrhizal inoculum potential was recorded for the mobile dunes and the highest for the shrub area. As expected, mycorrhizal inoculum potential increased with dune stabilization. Accepted: 17 July 1996  相似文献   

8.
Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant.  相似文献   

9.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1omega5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating (13)C enrichment of 16:1omega5 and compared it with (13)C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [(13)C]glucose. The (13)C enrichment of neutral lipid fatty acid 16:1omega5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for (13)C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1omega5 than for the root specific neutral lipid fatty acid 18:2omega6,9. We labeled plant assimilates by using (13)CO(2) in whole-plant experiments. The extraradical mycelium often was more enriched for (13)C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between (13)C enrichment in neutral lipid fatty acid 16:1omega5 and total (13)C in extraradical mycelia in different systems (r(2) = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the (13)C enrichment of 16:1omega5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

10.
Biomass and length of intraradical and extraradical mycorrhizal mycelium under ambient (aCO2) and elevated (eCO2 ) atmospheric CO2 was investigated using a non-destructive in vivo experimental model system. Time-course experiments allowed measurements of intact extraradical mycelium spreading from mycorrhizal roots of Prunus cerasifera micropropagated plants inoculated with the arbuscular mycorrhizal fungus Glomus mosseae, in controlled environmental chambers. The length of extraradical mycelium was significantly increased at the highest CO2 concentration, ranging from 10.7 to 20.3 m at aCO2 and eCO2, respectively. The biochemical determination of mycelial glucosamine content allowed the evaluation of intraradical and extraradical fungal biomass, which were 2 and 3 times larger at eCO2 than at aCO2. Present data show that Glomus mosseae responds to increases of CO2 concentrations producing larger mycorrhizal networks which may potentially represent carbon sink agents in soil ecosystems.  相似文献   

11.
An in vitro study investigated mechanisms for the development of genetically variable mycorrhizal mycelia for Laccaria bicolor. Seedlings of jack pine (Pinus banksiana) grown nonaseptically in an autoclaved soil substrate were given different L. bicolor inoculum treatments. These included (i) a dikaryotic mycelium genotype (D); (ii) D and basidiospores collected from one group of five sporophores (T1); (iii) D and basidiospores collected from 10 sporophores, two from each of five different groups (T5); (iv) T1 alone; (v) T5 alone; and (vi) a noninoculated control. Dikaryotic mycelial inoculum was provided at the time of sowing, while basidiospore inoculum was added at 10 weeks after seed germination. Sporophore formation was induced after 20 weeks of growth, and dikaryotic cultures were isolated from their tissue. Seedlings were harvested, and growth and mycorrhization were assessed. Levels of both were generally lower for T1-treated seedlings, compared with seedlings receiving D, while levels for T5-treated seedlings were intermediate. Sporophore genotype variability was assessed for inoculum treatments by using the isoenzymatic marker leucine aminopeptidase. The greatest genetic variability was seen with the basidiospore treatments T1 and T5, with up to four leucine aminopeptidase patterns per seedling. The mixed treatments D plus T1 and D plus T5 produced most frequently, but not exclusively, the inoculated dikaryon genotype. After isoenzyme results were assessed, variable sporophore isolates of mixed treatments were analyzed with randomly amplified polymorphic DNA and PCR mitochondrial DNA markers to determine if they were formed by dikaryon-monokaryon crosses between the inoculated dikaryon and monosporous mycelia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pattinson GS  McGee PA 《Mycorrhiza》2004,14(2):119-125
Tap and primary lateral roots of seedlings of the putatively non-mycorrhizal Banksia ericifolia became marginally colonised when grown in an established mycelium of an arbuscular mycorrhizal (AM) fungus in the laboratory. A similar degree of colonisation was found in seedlings from an open woodland. All colonies lacked arbuscules. Two factors influencing colonisation and associated growth of host plants were examined experimentally: concentration of P in the soil and organic energy associated with the fungus. While some inoculated seedlings were slightly smaller when colonised by AM fungi, the results were inconsistent and never statistically significant. Seedlings take up insignificant quantities of soil P during early growth, even in the presence of abundant added P. Though colonisation was minor in all cases, an existing mycelium, whether or not connected to a companion plant, slightly increased the amount of root of B. ericifolia colonised by an AM fungus. All seedlings grew slowly. Shoots were significantly larger than roots, until the initiation of proteoid roots which commenced at about 40 days after germination, with both relatively high and low P supply.  相似文献   

13.
The mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant–plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)–host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop–weed interference. In a 4‐years organic rotation, the effect of two winter cereal CC, rye and spelt, on weed density and AMF colonization was evaluated. The AMF extraradical mycelium on CC and weeds roots was observed by scanning electron microscopy analysis. By joining data of plant density and mycorrhization, we built the mycorrhizal colonization intensity of the Agroecosystem indicator (MA%). Both the CC were colonized by soil AMF, being the mycorrhizal colonization intensity (M%) affected by environmental conditions. Under CC, the weed density was reduced, due to the increase of the reciprocal competition in favor of CC, which benefited from mycorrhizal colonization and promoted the development of AMF extraradical mycelium. Even though non‐host plants, some weed species showed an increased mycorrhizal colonization in presence of CC respect to the control. Under intense rainfall, the MA% was less sensitive to the CC introduction. On the opposite, under highly competitive conditions, both the CC boosted significantly the mycorrhization of coexistent plants in the agroecosystem. The proposed indicator measured the agroecological service provided by the considered CCs in promoting or inhibiting the overall AMF colonization of the studied agroecosystems, as affected by weed selection and growth: It informs about agroecosystem resilience and may be profitably applied to indicate the extent of the linkage of specific crop traits to agroecosystem services, contributing to further develop the functional biodiversity theory.  相似文献   

14.
The ectomycorrhizal (ECM) fungi associated with Pinus thunbergii seedlings grown on sand dune were identified by molecular method, and the diversity of bacteria associated with ECM and Extraradical mycelium were examined by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR-amplified 16S rDNA. The mycorrhizal formation rate of 1-year old P. thunbergii seedlings was more than 95%. Cenococcum geophilum was the most dominant ECM fungus, followed by T01, RFLP-8, Russula spp., and Suillus sp. Bacterial community was most diverse with C. geophilum- and RFLP-8-mycorrhiza. Sequencing analysis showed that Burkholderia spp. and Bradyrhizobium spp. were on the surface of ECM short root of seven ECM. The fungi detected as extraradical mycelium using DGGE of 18S rDNA were Suillus bovinus and RFLP-8-mycorrhiza. Bacterial community on the extraradical mycelium was more diverse than those on ECM root tip. Burkholderia spp. and Bradyrhizobium spp. were found also on extraradical mycelium.  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

16.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

17.
Among chemicals that are widely spread both in terrestrial and aquatic ecosystems, benzo[a]pyrene is a major source of concern. However, little is known about its adverse effects on plants, as well as about the role of mycorrhization in protection of plant grown in benzo[a]pyrene-polluted conditions. Hence, to contribute to a better understanding of the adverse effects of polycyclic aromatic hydrocarbons on the partners of mycorrhizal symbiotic association, benzo[a]pyrene-induced oxidative stress was studied in transformed Cichorium intybus roots grown in vitro and colonized or not by Glomus intraradices. The arbuscular mycorrhizal fungus development (colonization, extraradical hyphae length, and spore formation) was significantly reduced in response to increasing concentrations of benzo[a]pyrene (35–280 μM). The higher length of arbuscular mycorrhizal roots, compared to non-arbuscular mycorrhizal roots following benzo[a]pyrene exposure, pointed out a lower toxicity of benzo[a]pyrene in arbuscular mycorrhizal roots, thereby suggesting protection of the roots by mycorrhization. Accordingly, in benzo[a]pyrene-exposed arbuscular mycorrhizal roots, statistically significant decreases were observed in malondialdehyde concentration and 8-hydroxy-2′-desoxyguanosine formation. The higher superoxide dismutase activity detected in mycorrhizal chicory roots could explain the benzo[a]pyrene tolerance of the colonized roots. Taken together, these results support an essential role of mycorrhizal fungi in protecting plants submitted to polycyclic aromatic hydrocarbon, notably by reducing polycyclic aromatic hydrocarbon-induced oxidative stress damage.  相似文献   

18.
Ectomycorrhizal synthesis on seedlings of Afzelia quanzensis was initiated in the greenhouse and in the field using basidiospores or soil inoculum originating from fungi associated with adult trees of A. quanzensis, Brachystegia microphylla, B. spiciformis, and Julbernardia globiflora. Of the spore inocula used, only a Pisolithus sp. associated with adult A. quanzensis formed mycorrhizae. Seedlings raised in contact with all soil inocula formed mycorrhizae; however, the mycorrhizal types formed differed between soil inoculum used in the greenhouse and soil inoculum directly used in the field. A. quanzensis has a low specificity for mycorrhizal association. The concepts of ectomycorrhizal succession are also applicable to African savanna ecosystems.  相似文献   

19.
Lehto T  Lavola A  Kallio E  Aphalo PJ 《Mycorrhiza》2004,14(3):209-212
Boron (B) is an essential micronutrient for plants but it is thought not to be essential for fungi. We studied whether the extraradical mycelia of Paxillus involutus in symbiosis with silver birch (Betula pendula) take up B and transport it to the host plant. We grew mycorrhizal plants in flat microcosms with a partitioning wall, below which there was only extraradical mycelium. A boric acid solution enriched in 10B was applied to these mycelia. Increased 10B/11B isotope ratios were subsequently measured in birch leaves, stems, and roots plus mycorrhizas in the upper compartment. Boron was therefore taken up by the mycorrhizal mycelia and transported to the host plant in this species combination.  相似文献   

20.
Plant root systems colonized by arbuscular mycorrhizal (AM) fungi have previously been shown to influence soil bacterial populations; however, the direct influence of the AM extraradical mycelium itself on bacterial growth and community composition is not well understood. In this study, we investigated the effects of exudates produced by AM extraradical mycelia on the growth and development of an extracted soil bacterial community in vitro. The chemical composition of the mycelial exudates was analysed using proton nuclear magnetic resonance spectrometry. Following the addition of exudates to a bacterial community extracted from soil, bacterial growth and vitality were determined using a bacterial vitality stain and fluorescence microscopy. Changes in community composition were also analysed at various times over the course of 3 days by terminal restriction fragment length polymorphism analysis, in combination with cloning and sequencing of 16S rRNA genes. Mycelial exudates increased bacterial growth and vitality and changed bacterial community composition. Several Gammaproteobacteria, including a taxon within the Enterobacteriaceae, increased in frequency of occurrence in response to AM mycelial exudates. This study is the first attempt to identify carbohydrates from the extraradical mycelium of an AM fungus, and demonstrates the direct effects of mycelial exudates on a soil bacterial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号