首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Recent studies in hepatocytes indicate that Na+-coupled HCO 3 transport contributes importantly, to regulation of intracellular pH and membrane HCO 3 transport. However, the direction of net coupled Na+ and HCO 3 movement and the effect of HCO 3 on Na+ turnover and Na+/K+ pump activity are not known. In these studies, the effect of HCO 3 on Na+ influx and turnover were measured in primary rat hepatocyte cultures with22Na+, and [Na+] i was measured in single hepatocytes using the Na+-sensitive fluorochrome SBFI. Na+/K+ pump activity was measured in intact perfused rat liver and hepatocyte monolayers as Na+-dependent or ouabain-suppressible86Rb uptake, and was measured in single hepatocytes as the effect of transient pump inhibition by removal of extracellular K+ on membrane potential difference (PD) and [Na+] i . In hepatocyte monolayers, HCO 3 increased22Na+ entry and turnover rates by 50–65%, without measurably altering22Na+ pool size or cell volume, and HCO 3 also increased Na+/K+ pump activity by 70%. In single cells, exposure to HCO 3 produced an abrupt and sustained rise in [Na+] i , from 8 to 12mm. Na+/K+ pump activity assessed in single cells by PD excursions during transient K+ removal increased 2.5-fold in the presence of HCO 3 , and the rise in [Na+] i produced by inhibition of the Na+/K+ pump was similarly increased 2.5-fold in the presence of HCO 3 . In intact perfused rat liver, HCO 3 increased both Na+/K+ pump activity and O2 consumption. These findings indicate that, in hepatocytes, net coupled Na+ and HCO 3 movement is inward and represents a major determinant of Na+ influx and Na+/K+ pump activity. About half of hepatic Na+/K+ pump activity appears dedicated to recycling Na+ entering in conjunction with HCO 3 to maintain [Na+] i within the physiologic range.  相似文献   

2.
Hydroxide, bicarbonate and buffer anion permeabilities in semitendinosus muscle fibers of Rana pipiens were measured. In all experiments, the fibers were initially equilibrated in isotonic, high K2SO4 solutions at pH o =7.2 buffered with phosphate. Two different methods were used to estimate permeabilities: (i) membrane potential changes were recorded in response to changes in external ion concentrations, and (ii) intracellular pH changes were recorded in response to changes in external concentrations of ions that alter intracellular pH. Constant field equations were used to calculate relative or absolute permeabilities.In the first method, to increase the size of the membrane potential change produced by a sudden change in anion entry, external K+ was replaced by Cs+ prior to changes of the anion under study. At constant external Cs+ activity, a hyperpolarization results from increasing external pH from 7.2 to 10.0 or higher, using either CAPS (3-[cyclohexylamino]-1-propanesulfonic acid) or CHES (2-[N-cyclohexylamino]-ethanesulfonic acid) as buffer. For each buffer, the protonated form is a zwitterion of zero net charge and the nonprotonated form is an anion. Using reported values of H+ permeability, calculations show that the reduction in [H+] o cannot account for the hyperpolarizations produced by alkaline solutions. Membrane hyperpolarization increases with increasing total external buffer concentration at constant external pH, and with increasing external pH at constant external buffer anion concentration. Taken together, these observations indicate that both OH and buffer anions permeate the surface membrane. The following relative permeabilities were obtained at pHo, 10.0± 0.3: (POH/PK) = 890 ± 150, (PCAPS/PK) = 12 ± 2 (PCHIES/PK) = 5.3 ± 0.9, and (PNO3/PK) = 4.7 ± 0.5 PNO/PK was independent of pH o up to 10.75. At pHo = 9.6, (PHCO3/PK) = 0.49 ± 0.03; at pH o = 8.9, (PCl/PK) = 18± 2 and at pH o = 7.1, (PHEPES/PK) = 20 ± 2.In the second method, on increasing external pH from 7.2 to 10.0, using 2.5 mm CAPS (total buffer concentration), the internal pH increases linearly with time over the next 10 min. This alkalinization is due to the entry of OH and the absorption of internal H+ by entering CAPS anion. The rate of CAPS entry was determined in experiments in which the external CAPS concentration was increased at constant external pH. Such increases invariably produced an increase in the rate of internal alkalinization, which was reversed when the CAPS concentration was reduced to its initial value. From the internal buffer power, the diameter of the fiber under study and the rates of change of internal pH, the absolute permeability for both OH and CAPS were calculated. At external pH = 10.0, the average (±sem) permeabilities were: POH=1.68±0.19×10–4 cm/sec and PCAPS=2.10±0.74×10–6cm/sec.We conclude that OH is about 50 times more permeable than Cl at alkaline pH and that the anionic forms of commonly used buffers have significant permeabilities.This research was supported by a grant from the National Institutes of Health (AR 31814). The authors wish to thank Dr. Peter G. Shrager and Dr. Bruce C. Spalding for reading an early draft of this report and for providing helpful suggestions.  相似文献   

3.
Summary Although it is generally believed thatChara and some fresh-water angiosperms transport bicarbonate ions inwards across their plasma membranes, there has been no direct demonstration of such transport in these plants. The (indirect) arguments for their transporting HCO 3 are arguments against the inward diffusion of CO2 at the observed rates. They rest on calculations of the equilibrium concentration of CO2 or of the maximum rate at which CO2 might be produced from HCO 3 at the pH of the medium outside the cells. SinceChara acidifies the medium over about half the cell surface during C assimilation, these calculations have been based on questionable premises.We propose a model forChara in which the acidification is attributed to active efflux of H+, and we calculate that both the equilibrium concentration of CO2 and its rate of production outside the cell can be high enough to support the observed rates of C assimilation, without postulating transport of the species HCO 3 or H2CO3.Calculations are presented also for alternative models in which there is membrane transport of HCO 3 . The first includes symport of H+ with HCO 3 , again dependent on active H+ efflux. In the second, there is active electrogenic transport of HCO 3 . In this case the low pH in the medium outside the cell is caused by the dissociation of H2CO3 produced by hydration of CO2 which leaks from the cell cytoplasm.All three models are consistent with the observations to date, but the first is more economical of postulates. It can also explain the apparent transport of HCO 3 by fresh-water angiosperms such asEgeria.  相似文献   

4.
Summary Intracellular pH (pHi) regulation was studied in crayfish neurons with pH-, and Na+-sensitive microelectrodes. It was confirmed to involve both a HCO 3 -dependent and a HCO 3 -independent mechanism. The latter was identified as the amiloride-sensitive Na+/H+ exchange described in vertebrate cells. Its dependence on extracellular pH (pHe) and Na+ concentration ([Na+]e) was studied in CO2-free external solutions at 20°C. The steady state pHi and the rate constant (k) of the exponential pHi recovery following an acid load were determined. At pHe=7.5 and [Na+]e=200 mM, the average steady state pHi was 7.09±0.12 (as compared to 7.30±0.10 in the presence of 5 mM bicarbonate). The dependence of the rate constant of recovery on [Na+]e could be described by Michaelis-Menten kinetics; at pHe=7.5 the apparentK m andK max were 39 mM and 1.4 mmol·l–1·min–1, respectively. Decreasing pHe reduced the rate of recovery, the variations ofk with pHe conforming to a simple titration curve with an apparent pK of 7.05±0.21. These kinetic properties of the Na+/H+ exchange in crayfish neurons are similar to those described in vertebrate cells.Preliminary results were presented at the First International Congress of Comparative Physiology and Biochemistry (Liège, Belgium, 1984)  相似文献   

5.
The optimal conditions for opening of stomata in detached epidermis of the Crassulacean Acid Metabolism (CAM) plant Kalanchoe daigremontiana were determined. Stomatal opening in CO2–free air was unaffected by light so subsequently all epidermal strips were incubated in the dark and in CO2–free air. Apertures were maximal after 3 h incubation and were significantly greater at 15° C than 25° C. Thus stomata in isolated epidermis of this species can respond directly to temperature. Stomatal opening was greatest when the incubating buffer contained 17.6 mol m–3 K+, but decreased linearly with increasing K+ concentrations between 17.6 and 300 mol m–3; the decrease in aperture was shown to be associated with increasing osmotic potentials of the solutions. Reasons for this behaviour, which differs from that of many C3 and C4 species, are discussed. Stomatal apertures declined linearly upon incubation of epidermis on buffer solutions containing between 10–11 and 10–5 mol m–3 abscisic acid (ABA). Hence stomata on isolated epidermis of K. daigremontiana respond to lower concentrations of ABA than those of any species reported previously.  相似文献   

6.
Summary In rabbit gallbladder epithelium, a Na+/H+, Cl/HCO 3 double exchange and a Na+–Cl symport are both present, but experiments on intact tissue cannot resolve whether the two transport systems operate simultaneously. Thus, isolated apical plasma membrane vesicles were prepared. After preloading with Na+, injection into a sodium-free medium caused a stable intravesicular acidification (monitored with the acridine orange fluorescence quenching method) that was reversed by Na+ addition to the external solution. Although to a lesser extent, acidification took place also in experiments with an electric potential difference (PD) equal to 0. If a preset pH difference (pH) was imposed ([H+]in>[H+]out, PD=0), the addition of Na-gluconate to the external solution caused pH dissipation at a rate that followed saturation kinetics. Amiloride (10–4 m) reduced the pH dissipation rate. Taken together, these data indicate the presence of Na+ and H+ conductances in addition to an amiloride-sensitive, electroneutral Na+/H+ exchange.An inwardly directed [Cl] gradient (PD=0) did not induce intravesicular acidification. Therefore, in this preparation, there was no evidence for the presence of a Cl/OH exchange.When both [Na+] and [Cl] gradients (outwardly directed, PD=0) were present, fluorescence quenching reached a maximum 20–30 sec after vesicle injection and then quickly decreased. The decrease was not observed in the presence of a [Na+] gradient alone or the same [Na+] gradient with Cl at equal concentrations at both sides. Similarly, the decrease was abolished in the presence of both Na+ and Cl concentration gradients and hydrochlorothiazide (5×10–4 m). The decrease was not influenced by an inhibitor of Cl/OH exchange (10–4 m furosemide) or of Na+–K+–2Cl symport (10–5 m bumetanide).We conclude that a Na+/H+ exchange and a Na+–Cl symport are present and act simultaneously. This suggests that in intact tissue the Na+–Cl symport is also likely to work in parallel with the Na+/H+ exchange and does not represent an induced homeostatic reaction of the epithelium when Na+/H+ exchange is inhibited.  相似文献   

7.
Summary The cellular mechanisms responsible for rectal acidification in the desert locust, Schistocerca gregaria, were investigated in isolated recta mounted as flat sheets in modified Ussing chambers. Previous studies conducted in the nominal absence of exogenous CO2 and HCO 3 suggested that the acidification was due to a proton-secretory rather than bicarbonate-reabsorptive mechanism (Thomson, R.B., Speight, J.D., Phillips, J.E. 1988. J. Insect Physiol. 34:829–837). This conclusion was confirmed in the present study by demonstrating that metabolic CO2 could not contribute sufficient HCO 3 to the lumen to account for the rates of rectal acidification observed under the nominally CO2/ HCO 3 -free conditions used in these investigations.Rates of luminal acidification (J H +) were completely unaffected by changes in contraluminal pH, but could be progressively reduced (and eventually abolished) by imposition of either transepithelial pH gradients (lumen acid) or transepithelial electrical gradients (lumen positive). Under short-circuit current conditions, the bulk of J H + was not dependent on Na+, K+, Cl,Mg2+, or Ca2+ and was due to a primary electrogenic proton translocating mechanism located on the apical membrane. A small component (10–16%) of J H + measured under these conditions could be attributed to an apical amiloride-inhibitable Na+/H+ exchange mechanism.This work was supported by operating grants to J.E.P. and postgraduate scholarships to R.B.T. from Natural Sciences & Engineering Research Council, Canada.  相似文献   

8.
Summary A stopped-flow rapid reaction apparatus was used to study the rate of pH equilibration in human red cell suspensions. Flux of OH or H+ was determined over a wide range of extracellular pH (4–11) in CO2-free erythrocyte suspensions. In these experiments, an erythrocyte suspension at pH 7.3 is rapidly mixed with an equal volume of NaCl solution at 3.0>pH>11.5. The pH of the extracellular fluid of the mixture changes rapidly as OH or H+ moves across the red cell membrane. Flux and velocity constants can be calculated from the initiald pH/dt using the known initial intra- and extracellular pH. It was found that the further the extracellular pH is from 7.3 (in either direction from 4–11), the greater the absolute value of total OH and/or H+ flux. Pretreatment with SITS (4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid), a potent anion exchange inhibitor, greatly reduces flux over the entire pH range, while exposure to valinomycin, a potassium ionophore, has no measurable effect. These data suggest that (i) both H+ and OH may be moving across the red cell membrane at all pH; (ii) the species dominating pH equilibration is probably dependent on the extracellular pH, which determines the magnitude of the driving gradient for each ion; and (iii) the rapid exchange pathway of the erythrocyte membrane may be utilized for both H+ and OH transport during CO2-free pH equilibration.  相似文献   

9.
J. Munoz  M. J. Merrett 《Planta》1989,178(4):450-455
Inorganic-carbon transport was investigated in the eukaryotic marine microalgaeStichococcus minor, Nannochloropsis oculata and aMonallantus sp. Photosynthetic O2 evolution at constant inorganic-carbon concentration but varying pH showed thatS. minor had a greater capacity for CO2 rather than HCO 3 utilization but forN. oculata andMonallantus HCO 3 was the preferred source of inorganic carbon. All three microalgae had a low affinity for CO2 as shown by the measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0. At pH 8.3, where HCO 3 is the predominant form of inorganic carbon, the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K 0.5 (CO2)] was 53 M forMonallantus sp. and 125 M forN. oculata, values compatible with HCO 3 transport. Neither extra- nor intracellular carbonic anhydrase was detected in these three microalgal species. It is concluded that these microalgae lack a specific transport system for CO2 but that HCO 3 transport occurs inN. oculata andMonallantus, and in the absence of intracellular carbonic anhydrase the conversion of HCO 3 to CO2 may be facilitated by the internal pH of the cell.  相似文献   

10.
Summary We have chosen the MDCK cell line to investigate aldosterone action on H+ transport and its role in regulating cell membrane K+ conductance (G m K ). Cells grown in a monolayer respond to aldosterone indicated by the dose-dependent formation of domes and by the alkalinization of the dome fluid. The pH sensitivity of the plasma membrane K+ channels was tested in giant cells fused from individual MDCK cells. Cytoplasmic pH (pH i ) andG m K were measured simultaneously while the cell interior was acidified gradually by an extracellular acid load. We found a steep signoidal relationship between pH i andG m K (Hill coefficient 4.4±0.4), indicating multiple H+ binding sites at a single K+ channel. Application of aldosterone increased pH i within 120 min from 7.22±0.04 to 7.45±0.02 and from 7.15±0.03 to 7.28±0.02 in the absence and presence of the CO2/HCO 3 buffer system, respectively. We conclude that the hormone-induced cytoplasmic alkalinization in the presence of CO2/ HCO 3 is limited by the increased activity of a pH i -regulating HCO 3 extrusion system. SinceG m K is stimulated half-maximally at the pH i of 7.18±0.04, internal H+ ions could serve as an effective intracellular signal for the regulation of transepithelial K+ flux.  相似文献   

11.
Summary We investigated intracellular pH (pH i ) regulation in cultured human ciliary muscle cells by means of the pH-sensitive absorbance of 5(and 6)-carboxy-4,5-dimethylfluorescein (CDMF). The steady-state pH i was 7.09±0.04 (n = 12) in CO2/ HCO 3 -buffered and 6.86±0.03 (n = 12) in HEPES-buffered solution. Removal of extracellular sodium for 6 min acidified the cells by 1.11±0.06 pH units (n = 12) in the presence of CO2/ HCO 3 and by 0.91±0.05 pH units (n = 8) in its absence. Readdition of external sodium resulted in a rapid pH i recovery, which was almost completely amiloride-sensitive in the absence of CO2/ HCO 3 but only slightly influenced by amiloride in its presence. Application of DIDS under steady-state conditions significantly acidified the ciliary muscle cells by 0.25±0.02 (n = 4) in 6 min, while amiloride had no effect. The pH i recovery after an intracellular acid load was completely dependent on extracellular sodium. In HEPES-buffered solution the pH i recovery was almost completely mediated by Na+/H+ exchange, since it was blocked by amiloride (1 mmol/liter). In contrast, a marked amilorideinsensitive pH i recovery was observed in CO2/HCO 3 -buffered solution which was mediated by chloride-independent and chloride-dependent Na+ HCO 3 cotransport. This recovery, inhibited by DIDS (0.2 mmol/liter). was also observed if the cells were preincubated in chloride-free solution for 4 hr. Analysis of the sodium dependence of the pH i recovery after NH4Cl prepulse revealed V max = 0.57 pH units/min, K m= 39.7 mmol/liter extracellular sodium for the amiloride-sensitive component and V max = 0.19 pH units/min, K m= 14.3 mmol/liter extracellular sodium for the arniloride-insensitive component. We conclude that Na+/H+ exchange and chloride-independent and chloride-dependent Na+HCO 3 cotransport are involved in the pH i regulation of cultured human ciliary muscle cells.The expert technical assistance of Astrid Krolik is gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft grant DFG Wi 328/11.  相似文献   

12.
Summary The apical membrane of the rabbit corneal endothelium contains a potassium-selective ionic channel. In patch-clamp recordings, the probability of finding the channel in the open state (P o) depends on the presence of either HCO 3 or Cl in the bathing medium. In a methane sulfonate-containing bath,P o is <0.05 at all physiologically relevant transmembrane voltages. With 0mm [HCO 3 ] o at +60 mV,P o was 0.085 and increased to 0.40 when [HCO 3 ] o was 15mm. With 4mm [Cl] o at +60 mV,P o was 0.083 and with 150mm Cl,P o increased to 0.36. LowP o's are also found when propionate, sulphate, bromide, and nitrate are the primary bath anions. The mechanism of action of the anion-stimulated K+ channel gating is not yet known, but a direct action of pH seems unlikely. The alkalinization of cytoplasm associated with the addition of 10mm (NH4)2SO4 to the bath and the acidification accompanying its removal do not result in channel activation nor does the use of Nigericin to equilibrate intracellular pH with that of the bath over the pH range of 6.8 to 7.8. Channel gating also is not affected by bathing the internal surface of the patch with cAMP, cGMP, GTP--s, Mg2+ or ATP. Blockers of Na/H+ exchange, Na+–HCO 3 cotransport, Na+–K+ ATPase and carbonic anhydrase do not block the HCO 3 stimulation ofP o. Several of the properties of the channel could explain some of the previously reported voltage changes that occur in corneal endothelial cells stimulated by extracellular anions.  相似文献   

13.
The proton/hydroxide (H+/OH) permeability of phospholipid bilayer membranes at neutral pH is at least five orders of magnitude higher than the alkali or halide ion permeability, but the mechanism(s) of H+/OH transport are unknown. This review describes the characteristics of H+/OH permeability and conductance through several types of planar phospholipid bilayer membranes. At pH7, the H+/OH conductances (G H/OH) range from 2–6 nS cm–2, corresponding to net H+/OH permeabilities of (0.4–1.7)×10–5 cm sec–1. Inhibitors ofG H/OH include serum albumin, phloretin, glycerol, and low pH. Enhancers ofG H/OH include chlorodecane, fatty acids, gramicidin, and voltages >80 mV. Water permeability andG H/OH are not correlated. The characteristics ofG H/OH in fatty acid (weak acid) containing membranes are qualitatively similar to the controls in at least eight different respects. The characteristics ofG H/OH in gramicidin (water wire) containing membranes are qualitatively different from the controls in at least four different respects. Thus, the simplest explanation for the data is thatG H/OH in unmodified bilayers is due primarily to weakly acidic contaminants which act as proton carriers at physiological pH. However, at low pH or in the presence of inhibitors, a residualG H/OH remains which may be due to water wires, hydrated defects, or other mechanisms.  相似文献   

14.
Summary The effects of stepwise concentration changes of K+ and HCO 3 in the basolateral solution on the basolateral membrane potential (V bl) of proximal tubule cells of the doubly-perfusedNecturus kidney were examined using conventional microelectrodes. Apparent transference numbers were calculated from changes inV bl after alterations in external K+ concentration from 1.0 to 2.5mm (t K, 1.0–2.5), 2.5 to 10, and in external HCO 3 concentration (at constant pH) from 5 to 10mm (t HCO3, 5–10), 10 to 20, or 10 to 50.t K, 2.5–10 was 0.38±0.02 under control conditions but was sharply reduced to 0.08±0.03 (P>0.001) by 4mm Ba++. This concentration of Ba++ reducedV bl by 9±1 mV (at 2.5 external K+). Perfusion with SITS (5×10–4 m) for 1 hr hyperpolarizedV bl by 10±3 mV and increasedt K, 2.5–10 significantly to 0.52±0.01 (P<0.001). Ba++ application in the presence of SITS depolarizedV bl by 22±3 mV. In control conditionst HCO3, 10–50 was 0.63±0.05 and was increased to 0.89±0.07 (P<0.01) by Ba++ but was decreased to 0.14±0.02 (P<0.001) by SITS. In the absence of apical and basolateral chloride, the response ofV bl to bicarbonate was diminished but still present (t HCO3, 10–20 was 0.35±0.03). Intracellular pH, measured with liquid ion-exchange microelectrodes, increased from 7.42±0.19 to 7.57±0.17 (P<0.02) when basolateral bicarbonate was increased from 10 to 20mm at constant pH. These data show that the effects of bicarbonate onV bl are largely independent of effects on the K+ conductance and that there is a significant current-carrying bicarbonate pathway in the basolateral membrane. Hence, both K+ and HCO 3 gradients are important in the generation ofV bl, and their relative effects vary reciprocally.  相似文献   

15.
Summary The effects of bathing solution HCO 3 /CO2 concentrations on baseline cell membrane voltages and resistances were measured inNecturus gallbladder epithelium with conventional intracellular microelectrode techniques. Gallbladders were bathed in either low HCO 3 /CO2 Ringer's solutions (2.4mm HCO 3 /air or 1mm HEPES/air) or a high HCO 3 /CO2 Ringer's (10mm HCO 3 /1% CO2). The principal finding of these studies was that the apical membrane fractional resistance (fR a) was higher in tissues bathed in the 10mm HCO 3 /CO2 Ringer's, averaging 0.87±0.06, whereasfR a averaged 0.63±0.07 and 0.48±0.08 in 2.4mm HCO 3 and 1mm HEPES, respectively. Intraepithelial cable analysis was employed to obtain estimates of the individual apical (R a) and basolateral membrane (R b) resistances in tissues bathed in 10mm HCO 3 /1% CO2 Ringer's. Compared to previous resistance measurements obtained in tissues bathed in a low HCO 3 /CO2 Ringer's, the higher value offR a was found to be due to both an increase inR a and a decrease inR b. The higher values offR a and lower values ofR b confirm the recent observations of others. To ascertain the pathways responsible for these effects, cell membrane voltages were measured during serosal solution K+ and Cl substitutions. The results of these studies suggest that an electrodiffusive Cl transport mechanism exists at the basolateral membrane of tissues bathed in a 10mm HCO 3 /1% CO2 Ringer's, which can explain in part the fall inR b. The above observations are discussed in terms of a stimulatory effect of solution [HCO 3 /PCO2 on transepithelial fluid transport, which results in adaptive changes in the conductive properties of the apical and basolateral membranes.  相似文献   

16.
R. J. Haynes 《Plant and Soil》1990,126(2):247-264
The processes responsible for maintenance of cation-anion balance in plants and their relation to active ion accumulation and changes in rhizosphere pH are outlined and discussed. The major processes involved are: (1) accumulation and degradation of organic acids which occur in the plant mainly as organic acid anions (and their transfer within the plant) and (2) extrusion of H+ or OH into the rhizosphere. The relative importance of the two processes is determined by the size of the excess anion or cation uptake. Indeed, plants typically absorb unequal quantities of nutritive cations (NH4 ++Ca2++ Mg2++K++Na+) and anions (NO3 +Cl+SO4 2–+H2PO4 ) and charge balance is maintained by excretion of an amount of H+ or OH which is stoichiometrically equal to the respective excess cation or anion uptake. The mechanisms and processes by which H+ and in particular OH ions are excreted in response to unequal cation-anion uptake are, however, poorly understood.The contemporary view is that primary active extrusion of H+, catalyzed by a membrane-located ATPase, is the major driving force for secondary transport of cations and anions across the plasma membrane. However, the fact that net OH extrusion often occurs (since excess anion absorption commonly takes place) implies there is a yet-to-be characterized OH ion efflux mechanism at the plasma membrane that is associated with anion uptake. There is, therefore, a need for future studies of the uptake mechanisms and stoichiometry of anion uptake; particularly that of NO3 which is often the predominant anion absorbed. Another related phenonenon which requires detailed study in terms of cation-anion balance is localized rhizosphere acidification which can occur in response to deficiencies of Fe and P.  相似文献   

17.
C. I. Ullrich  J. Guern 《Planta》1990,180(3):390-399
During the reduction of extracellular [Fe(CN)6]3– at the plasmalemma of intact, K+-starvedLemna gibba L. fronds, the external medium was acidified and K+ released, in the absence of inhibitors with rates of 10 e/8.5 H+/1.5 K+ (mol·(g FW)–1·–1). In K+ plants the larger K+ efflux caused a lag phase in extracellular acidification and a change in rates to 10 e/6 H+/4 K+ and in the presence of CN+salicylhydroxamic acid at pH 5 to 5.2 e/0 H+/6.6 K+. The e transfer was accompanied by a membrane depolarization of up to 100 mV and a cytosolic acidification of about 0.6 pH units, but only in K+ plants, where the extracellular acidification was smaller. These results indicate that a stimulation of the plasmalemma H+-ATPase may be triggered either by a cytosolic acidification or by a strong membrane depolarization. It is concluded that the redox system catalyses only uncoupled e transfer without H+ transfer across the plasmalemma. The obligatory, but secondary charge compensation is partially achieved by the rapid K+ release upon membrane depolarization and partially by the activity of the plasma membrane H+-ATPase, but not by an e/anion exchange. The extracellular acidification during [Fe(CN)6]3– reduction is generated by the conversion of a strong trivalent into a strong tetravalent anion. This acidification is caused by changes in the concentration ratio of strong cations to strong anions. Efflux of K+ and not the production of organic acids or NAD(P)H oxidation is the chemical cause of the measurable cytosolic acidification. Extracellular acidification was inversely correlated with intracellular acidification. Similarly, fusicoccin-induced pH changes were correlated with changes in the strong-ion concentration difference. Extracellular ± FC-dependent acidification and intracellular alkalinization of up to 0.6 pH units were strongly dependent on K+ fluxes. The ferricyanide-triggered trans-plasmalemma electron-transfer system is an example of how measurable pH changes are the consequence and not the cause of charge-transfer-induced changes in strong-ion fluxes.Abbreviations DCCD dicyclohexylcarbodiimide - Em electrical membrane potential difference - FC fusicoccin - pHc cytosolic pH - FW fresh weight - PM plasmalemma - SHAM salicylhydroxamic acid - SID strong-ion concentration difference This work was supported by the Deutsche Forschungsgemeinschaft. We gratefully acknowledge the Alexander von Humboldt award donated to J.G. We thank Professor Ulrich Lüttge (TH Darmstadt, FRG) for his kind support and Annett Ehrhardt and Dr. Karl Fischer (TH Darmstadt, FRG) for their valuable help with Cl and CO2 experiments. Special thanks are due to Professor Erasmo Marrè (Università di Milano, Italy) for continuous discussions and also to Professor Alessandro Ballio (Università di Roma, Italy) for their kind gifts of fusicoccin.  相似文献   

18.
Photosynthesis of washed cells of Synechococcus UTEX 625 grown on 5% CO2 was markedly stimulated (647 ± 50%) at pH 8.0 by the addition of low concentrations of NaCl (concentration required for half-maximal response, K½, = 18 micromolar). Studies with KCl and Na2SO4 showed that the stimulation was due to Na+. Photosynthesis at pH 6.1 was only slightly stimulated by Na+. The response of photosynthesis at pH 8.0 to [Na+] was strongly sigmoidal for dissolved inorganic carbon ([DIC] ≤ 500 micromolar). Cells grown with high total [DIC], but air-levels of CO2, at pH 9.6 showed the same response to low [Na+]. The absence of Na+ could be partially, but not completely overcome, by higher [DIC]. Various methods for examining CO2 or HCO3 use (K½CO2 determination; isotopic disequilibrium; and consideration of HCO3 dehydration rate) were consistent with CO2 use by the cells, but HCO3 use could not be ruled out. Isotopic disequilibrium studies showed that CO2 use was stimulated by Na+. Cells grown on 5% CO2 accumulated DIC against a concentration gradient by a process (or processes) dependent on Na+. No evidence for uptake of Na+ concomitant with DIC uptake could be found. The lack of O2 evolution during the initial and most rapid period of DIC accumulation suggested that the required energy was obtained from cyclic photophosphorylation.  相似文献   

19.
The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, K w = [H+]×[OH].We used K w [in a reversed way] to calculate the number of undissociated H2O molecules required by this equilibrium constant to yield at least one of its daughter ions, H+ or OH at a given pH. In this way we obtained a formula that relates pH to the minimal volume VpH required to provide a physical meaning to K w, (where N A is Avogadro’s number). For example, at pH 7 (neutral at 25°C) VpH = 16.6 aL. Any deviation from neutral pH results in a larger VpH value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H+ ions at equilibrium, thus the definition of pH based on K w is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H+ ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H+ ions as a general source for biochemical reactions. Consequences of this finding are discussed.  相似文献   

20.
Secretion of bicarbonate has been described for distal nephron epithelium and attributed to apical Cl/HCO 3 exchange in beta-intercalated cells. We investigated the presence of this mechanism in cortical distal tubules by perfusing these segments with acid (pH 6) 10 mm phosphate Ringer. The kinetics of luminal alkalinization was studied in stationary microperfusion experiments by double-barreled pH (ion-exchange resin)/1 m KCl reference microelectrodes. Luminal alkalinization may be due to influx (into the lumen) of HCO 3 or OH, or efflux of H+. The magnitude of the Cl/ HCO 3 exchange component was measured by perfusing the lumen with solutions with or without chloride, which was substituted by gluconate. This component was not different from zero in control and alkalotic (chronic plus acute) Wistar rats. Homozygous Brattleboro rats (BRB), genetically devoid of antidiuretic hormone, were used since this hormone has been shown to stimulate H+ secretion, which could mask bicarbonate secretion. In these rats, no evidence for Cl/HCO 3 exchange was found in control BRB and in early distal segments of alkalotic animals, but in late distal tubule a significant component of 0.14±0.033 nmol/cm2 · sec was observed, which, however, is small when compared to the reabsorptive flow found in control Wistar rats, of 0.95±0.10 nmol/cm2 · sec. In addition, 5×10–4 m SITS had no effect on distal bicarbonate reabsorption in controls as well as on secretion in alkalotic Wistar and Brattleboro rats, which is compatible with the absence of effect of this drug on the apical Cl/HCO 3 exchange in other tissues. It is concluded that most distal alkalinization is not Cl dependent, and that Cl/HCO 3 exchange may be found in cortical distal tubule, but its magnitude is, even in alkalosis, markedly smaller than the reabsorptive flux, which predominates in the rats studied in this paper, keeping luminal pH lower than that of blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号