首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Amphibian defenses against ultraviolet-B radiation   总被引:4,自引:0,他引:4  
As part of an overall decline in biodiversity, amphibian populations throughout the world are disappearing. There are a number of potential causes for these declines, including those related to environmental changes such as increasing ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion. UV-B radiation can kill amphibian embryos or can cause sublethal effects that can harm amphibians in later life stages. However, amphibians have defenses against UV-B damage that can limit damage or repair it after exposure to UV-B radiation. These include behavioral, physiological, and molecular defenses. These defenses differ interspecifically, with some species more able to cope with exposure to UV-B than others. Unfortunately, the defense mechanisms of many species may not be effective against increasing persistent levels of UV-B radiation that have only been present for the past several decades due to human-induced environmental damage. Moreover, we predict that persistent UV-B-induced mortality and sublethal damage in species without adequate defenses could lead to changes in community structure. In this article we review the effects of UV-B radiation on amphibians and the defenses they use to avoid solar radiation and make some predictions regarding community structure in light of interspecific differences in UV-B tolerance.  相似文献   

2.
Ambient ultraviolet-b (UV-B) radiation (280-320 nm) has increased at north-temperate latitudes in the last two decades. UV-B can be detrimental to amphibians, and amphibians have shown declines in some areas during this same period. We documented the distribution of amphibians and salmonids in 42 remote, subalpine and alpine ponds in Olympic National Park, Washington, United States. We inferred relative exposure of amphibian habitats to UV-B by estimating the transmission of 305- and 320-nm radiation in pond water. We found breeding Ambystoma gracile, A. macrodactylum and Rana cascadae at 33%, 31%, and 45% of the study sites, respectively. Most R. cascadae bred in fishless shallow ponds with relatively low transmission of UV-B. The relationship with UV-B exposure remained marginally significant even after the presence of fish was included in the model. At 50 cm water depth, there was a 55% reduction in incident 305-nm radiation at sites where breeding populations of R. cascadae were detected compared to other sites. We did not detect associations between UV-B transmission and A. gracile or A. macrodactylum. Our field surveys do not provide evidence for decline of R. cascadae in Olympic National Park as has been documented in Northern California, but are consistent with the hypothesis that the spatial distribution of R. cascadae breeding sites is influenced by exposure to UV-B. Substrate or pond depth could also be related to the distribution of R. cascadae in Olympic National Park.  相似文献   

3.
Photosynthetic activity of the moss Sanionia uncinata (Hedw.) Loeske was investigated on Léonie Island (67°35'S, 68°20'W, Antarctic Peninsula) in response to short-term changes of UV-B radiation. The UV-environment of natural mat formations dominated by S. uncinata was altered using filter screens. Two filter experiments were conducted in the Antarctic summers 1998 and 1999. A third filter experiment was conducted during springtime ozone depletion in October 1998. Photosynthetic activity of S. uncinata was mainly determined by photosynthetically active photon flux density (PPFD). Light response of relative electron transport rate through photosystem II (rel ETR=jF/Fm'2PPFD) remained unaffected by ambient summer levels of UV-B radiation. The same was found for net photosynthesis and dark respiration. In October 1998, S. uncinata was mainly metabolically inactive due to low temperatures. No significant levels of DNA-damage measured as cyclobutane pyrimidine dimers (CPDs) were induced by ambient summer levels of UV-B. Artificially enhanced UV-B radiation supplying a Setlow-DNA-dose of 8.7 kJ mф dayу UV-B led to formation of 7Dž CPD (106 nucleotides)-1. It is concluded that current ambient summer levels of UV-B radiation do not affect photosynthetic activity in S. uncinata.  相似文献   

4.
5.
Recent catastrophic global amphibian declines have been partially linked to increases in UV-B radiation as a consequence of stratospheric ozone depletion. Previous studies have shown that in the presence of other environmental stressors including aquatic pH and temperature and the presence of contaminants or pathogens, the lethal effects of UV-B on amphibian larvae are enhanced due to interactions between the stressors. Little is known about the interactions between UV-B and aquatic hypoxia, a common and significant natural stressor of amphibian larvae. We examined the potential effects of UV-B and aquatic hypoxia in combination on embryonic survival, developmental rate, body mass and locomotor performance of embryos and larvae of the striped marsh frog, Limnodynastes peronii. We found that while both UV-B and hypoxia independently had substantial negative effects on the developing embryos of L. peronii, they did not interact in a multiplicative or antagonistic manner. The effects of the stressors in combination were as might be predicted based on the knowledge of their independent actions alone (i.e. an additive effect). In all cases developing embryos exposed to both UV-B and hypoxia were more severely affected than those exposed to either UV-B or hypoxia alone. The results of this study show the importance of examining both the direct actions of individual stressors and how these may be influenced by the presence of other environmental factors.  相似文献   

6.
We conducted an artificial pond experiment to test hypotheses about the effects of competition and non-lethal predator cues on metamorphic characteristics of sympatric Oregon spotted frogs (Rana pretiosa) and red-legged frogs (Rana aurora) in southwestern British Columbia. Tadpoles were exposed to the presence or absence of one another, two density levels and to the presence or absence of predacious odonate larvae (Aeshna palmata) isolated in enclosures. In the artificial pond study, R. aurora were significantly larger at metamorphosis (12%) and exhibited only slightly longer larval periods when exposed to Aeshna. In the presence of R. pretiosa, they significantly decreased time to metamorphosis, and were significantly larger at metamorphosis (12%) than those reared alone. Rana pretiosa in treatments with R. aurora were somewhat larger at metamorphosis when a non-lethal predator was present, and in treatments where R. pretiosa were alone with a predator tadpole mass at metamorphosis was smaller than those in the absence of Aeshna, but these results were not statistically significant. Both species reduced activity and moved away from the predator in the presence of an enclosed dragonfly larva in the laboratory. Most tadpole mesocosm experiments have found that the trade-off between size and timing of metamorphosis is extremely important to amphibians, but we suggest that the trade-off discussed in traditional amphibian models may not apply to species like R. pretiosa that are exposed to the same gape-limited predators upon reaching metamorphosis.  相似文献   

7.
Ultraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals. In outdoor mesocosm and laboratory experiments we studied potential synergistic effects of UVB, a pathogenic fungus, Batrachochytrium dendrobatidis (Bd), and varying temperatures on larval Cascades frogs (Rana cascadae). First, we compared survivorship, growth and development in two mesocosm experiments with UVB- and Bd-exposure treatments. We then investigated the effects of UVB on larvae in the laboratory under two temperature regimes, monitoring survival and behavior. We found reduced survival of R. cascadae larvae with exposure to UVB radiation in all experiments. In the mesocosm experiments, growth and development were not affected in either treatment, and no effect of Bd was found. In the laboratory experiment, larvae exposed to UVB demonstrated decreased activity levels. We also found a trend towards reduced survival when UVB and cold temperatures were combined. Our results show that amphibian larvae can suffer both lethal and sublethal effects when exposed to UVB radiation.  相似文献   

8.
A number of studies have failed to find evidence for negative effects of ultraviolet-B radiation (UVBR) on amphibian early-embryonic performance, leading to the conclusions, first, that the embryonic stages of many species are tolerant to UVBR, and second, that the increased amount of UVBR reaching the Earth's surface is not likely to have any direct negative effects on many amphibian populations. However, possible carry-over effects of exposure to UVBR in the embryonic stages to the larval stages have received less attention. We studied the effects of UVBR experienced during the embryonic stages (age less than 11 days) on the later performance (age 11-75 days) of common frog, Rana temporaria, larvae. In a factorial laboratory experiment, newly fertilized embryos were divided into three different UVBR treatments (no UVBR (control), 1.25 kJm(-2) (normal) and 1.58 kJm(-2) (26% enhanced)), after which the individual larvae were raised until metamorphosis in the absence of UVBR. No effects of UVBR on embryonic survival rates, frequency of developmental anomalies or hatchling size were found, corroborating the earlier results indicating that R. temporaria embryos are tolerant to UVBR. However, analyses of larval performance revealed that larvae exposed to enhanced levels of UVBR as embryos suffered from an increased frequency of developmental anomalies and metamorphosed later and at a smaller size than larvae that had been protected from UVBR as embryos. These results suggest, in contrast to the earlier studies, that UVBR has direct negative effects on R. temporaria embryos, but these effects are expressed mostly or only during the later life stages. To this end, our results support the contention that carry-over effects from one life stage to another may be an important source of phenotypic variation in fitness.  相似文献   

9.
Eggs of dab (Limanda limanda) and plaice (Pleuronectes platessa) were experimentally exposed to ultraviolet-B (UV-B) radiation in a solar radiation simulator. The experimental design tried to simulate present and future conditions with reference to increased UV-B exposure due to northern hemisphere ozone loss, employing mainly two scenarios, a reduction to 270 (S1) and to 180 (S2) Dobson units (DU) in single or repetitive exposures of 2, 4 or 6 h. Depending on the total dose of UV-B irradiation and the developmental stage, exposed eggs displayed loss of buoyancy as a sublethal effect, as well as increased embryo mortality and reduced viable hatch. In the single exposure experiments only under conditions of 180 DU for 6 h were effects apparent. Double exposure under conditions of 270 DU did not lead to lasting effects. At the sublethal effect level, i.e. loss of buoyancy, considerable photorepair was observed. It was concluded, that under the present general weather conditions in spring and at the present levels of environmental ozone, allowing for a reduction to 180 DU, the embryonic development of North Sea spring spawning fish is not endangered by UV-B radiation. Received in revised form: 19 June 2000 Electronic Publication  相似文献   

10.
1. Environmental stressors have both lethal and sublethal effects, such as altered developmental rates and the induction of malformations. Ecological interactions, including predation and competition, often amplify such effects, for instance by inducing behavioural changes that increase susceptibility to the stress. 2. Using experimental mesocosms, we asked whether the density of conspecific competitors and predation risk from larval water beetles (Dytiscus spp.) affect the development of malformations in tadpoles of the wood frog (Rana sylvatica). We also examined whether such malformities increase the susceptibility of tadpoles to predation. 3. The risk of predation decreased the frequency of malformities in both low‐ and high‐density treatments, although this effect was greater at low density. Behavioural observations suggested that reductions in activity by amphibian larvae induced by predators mediated these responses by decreasing cumulative exposure to ultraviolet‐B radiation, the putative stressor causing the observed malformity. These results suggest that predators can reduce negative impacts of stressors by inducing behavioural changes in prey organisms. 4. Malformed individuals were twice as vulnerable to predators as non‐malformed individuals, suggesting that sublethal effects can ultimately cause increased mortality.  相似文献   

11.
Irradiation with artificial quasi-solar light was used to investigate lethal and sublethal effects of enhanced ultraviolet-B (UV-B) radiation on eggs, larval and juvenile stages of North Sea plaice. The irradiation experiments resembled a worst-case scenario with a synchronous occurrence of ozone depletion, sunny weather, and low water turbulence. In eggs, UV-B exposure increased mortality and induced loss of positive buoyancy. UV-B exposures for 1 or 2 days, according to the weather conditions in spring, impaired eggs only if UV-B intensities and doses exceeded those under a further 60% ozone loss. In larvae and juveniles, long-term UV-B exposures during and after metamorphosis affected ventilation rate at normoxia and ventilatory regulation during hypoxic incubations. Oxygen consumption rates of juveniles were not affected by UV-B irradiation. Received in revised form: 20 April 2000 Electronic Publication  相似文献   

12.
Three-year-old birch (Betula pendula Roth.) seedlings were exposed, in the field, to supplemental levels of UV-B radiation. Control seedlings were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Enhanced UV-B radiation had no significant effects on height growth, and shoot and root biomass of birch seedlings. Leaf expansion rate increased transiently in the middle of the growing period in enhanced UV-B- and UV-A-exposed plants; however, final leaf size and relative growth rate remained unaffected. Leaf thickness and spongy intercellular spaces were increased in UV-B-exposed seedlings along with increased density of glandular trichomes. At the ultrastructural level, enhanced UV-B increased the number of cytoplasmic lipid bodies, and abnormal membrane whorls were found. Both enhanced UV-B and UV-A radiation induced swelling of chloroplast thylakoids. Stomatal density and conductance were significantly increased by elevated UV-B radiation. UV-A radiation increased the length and width of stomata, whereas UV-B radiation had only a marginal effect on stomatal size. UV-A and enhanced UV-B radiation attenuated the appearance of necrotic spots in autumn, probably caused by the fungus Pyrenopeziza betulicola, suggesting a direct harmful effect of UV on pathogens or reduced susceptibility to pathogens in UV-exposed seedlings. Secondary metabolite analysis showed increases in (+)-catechin, quercetin, cinnamic acid derivative, apigenin and pentagalloylglucose in birch leaves under enhanced UV-B radiation. Negative correlations between apigenin, and particularly quercetin concentrations and lipid peroxidation levels indicated an antioxidant role of secondary metabolites in birch leaves exposed to UV-B radiation.  相似文献   

13.
Ephemeral pools, which can have high animal biomass and low dissolved oxygen, may be prone to nitrite accumulation. As such, it is important to understand how exposure to nitrite might affect development and growth of amphibians that breed in these ephemeral pools. Wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and tadpoles and young larvae were exposed to elevated concentrations of nitrite derived from sodium nitrite: 0, 0.3, 0.6, 1.2, 2.1, 4.6, and 6.1 mg l−1 NO2–N. Increasing nitrite exposure slowed embryonic and larval development in both the eastern tiger salamander and the wood frog, reduced growth in tiger salamander embryos and larvae, and delayed metamorphosis in the wood frog. At concentrations less than 2 mg l−1 NO2–N nitrite delayed hatching, and at concentrations above 2 mg l−1 time to hatching decreased causing more individuals to hatch at less developed stages. Nitrite also increased asynchrony in tiger salamander hatching. The sublethal effects of nitrite on amphibian development, growth and hatching could have serious repercussions on amphibian fitness in ephemeral environments. Potential increases in mortality on field populations caused by sublethal effects of nitrite are discussed.  相似文献   

14.
Solar ultraviolet-B radiation (UV-B) can have large impacts on the interactions between plants and herbivorous insects. Several studies have documented effects of UV-B-induced changes in plant tissue quality on the feeding performance of insect larvae. In contrast, the effects of UV-B-induced plant responses on the behavior of adult insects have received little attention. We carried out a series of field and glasshouse experiments using the model plant Arabidopsis thaliana L. and the crucifer-specialist insect Plutella xylostella L. (diamondback moth) to investigate the effects of UV-B on natural herbivory and plant–insect interactions. Natural herbivory under field conditions was less severe on plants exposed to ambient UV-B than on plants grown under filters that attenuated the UV-B component of solar radiation. This reduced herbivory could not be accounted for by effects of UV-B on larval feeding preference and performance, as P. xylostella caterpillars did not respond to changes in plant quality induced by UV-B. In contrast, at the adult stage, the insects presented clear behavioral responses: P. xylostella moths deposited significantly more eggs on plants grown under attenuated UV-B levels than on plants exposed to ambient UV-B. The deterring effect of UV-B exposure on insect oviposition was absent in jar1-1, a mutant with impaired jasmonic acid (JA) sensitivity, but it was conserved in mutants with altered ethylene signaling. The jar1-1 mutant also presented reduced levels of UV-absorbing phenolic compounds than the other genotypes that we tested. Our results suggest that variations in UV-B exposure under natural conditions can have significant effects on insect herbivory by altering plant traits that female adults use as sources of information during the process of host selection for oviposition. These effects of natural UV-B on plant quality appear to be mediated by activation of signaling circuits in which the defense-related hormone JA plays a functional role.  相似文献   

15.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

16.
The release of certain man-made chemicals has led to recurrent, seasonal destruction of ozone in the upper atmosphere, allowing more solar radiation in the UV-B waveband to reach the Earth. Consequently, many amphibians may suffer increased exposure to UV-B at various stages in their lives. Embryonic stages of species which spawn in the spring, in shallow, open water, are at high risk of increased exposure. We exposed newly fertilized eggs of one such species, Rana temporaria L., to sunlight with and without supplemental UV-B. We used outdoor arrays of lamps to simulate the increase in UV-B which might result from previously documented ozone depletion. From immediately after fertilization to when hatchlings began feeding, ambient solar UV-B, weighted for DNA-damaging potential, was supplemented by ≈ 81% in 1995 and 113% in 1996. These levels of supplementation approximated the increase in solar UV-B expected to result from losses of 21% and 25%, respectively, of the total amount of ozone in the atmospheric column, relative to pre-ozone-depletion values. We found no evidence that these additions of UV-B radiation increased the incidence of mortality or overt developmental abnormality among embryos. We stress the need for appropriate dosimetry in studies of effects of UV-B on organisms.  相似文献   

17.
The aim of this work was to test our hypothesis that pine needles protect themselves against UV-B radiation via anatomical changes in the epidermal layer. This could lead to needle growth reductions if large quantities of assimilates are allocated for the epidermal protective mechanisms at the expense of photosynthetic area. Effects of enhanced UV-B radiation on the needle ontogeny of mature Scots pines (Pinus sylvestris L.) were studied during the second season of a field experiment. Depending on the season and the time of the year (1996-1997), the enhanced UV-B irradiance varied from 0.92 to 5.09 kJ m-2 day-1 UV-BBE compared to 0.54-2.44 kJ m-2 day-1 UV-BBE of ambient radiation. It was found that UV-B treatment accelerated the early development of needles. In 6-day-old enhanced UV-B-treated needles, mesophyll and hypodermic cells were fully differentiated, whereas in ambient-treated needles, no lobate mesophyll cells were seen and hypodermic cells had not yet developed. In fully grown needles, no accelerated differentiation was seen, except that the epidermal cross-sectional area was smaller. The continuation of the experiment will show if such a significant difference only occurs irregularly and incidentally or if it is of consistent significance for needles.  相似文献   

18.
Increasing ultraviolet-B radiation (UV-B) has recently captured the attention of ecologists as a key environmental stressor. Certain species may be particularly vulnerable as a result of either high natural exposure to UV-B or limited physiological capacity to withstand it. UV-B sensitivity has been examined at the cellular and individual level for a wide variety of taxa, but estimates of exposure to UV-B in natural systems are lacking and predictions of large-scale impacts are therefore limited. Here, we combine data on the physiological sensitivity to UV-B and patterns of field exposure across sites for embryos of several well-studied US Pacific Northwest amphibian species. We find substantial differences among species' physiological abilities to withstand UV-B and in the level of UV-B exposure of embryos in the field. More specifically, we find that species with the highest physiological sensitivity to UV-B are those with the lowest field exposures as a function of the location of embryos and the UV-B attenuation properties of water at each site. These results also suggest that conclusions made about species' vulnerability to UV-B in the absence of information on field exposures may often be misleading.  相似文献   

19.
Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.  相似文献   

20.
Transplantation experiments conducted in the Arctic Kongsfjord (Spitsbergen) in summer 1997 investigated the effects of various types of filtered natural radiation (solar, solar without UV-B, solar without UV-A/B) on photosynthesis of various macroalgae. Two brown algal species (Laminaria solidungula, Saccorhiza dermatodea) and four red algal species (Palmaria palmata, Phycodrys rubens, Phyllophora truncata, Ptilota plumosa) were collected from deeper waters, kept in UV-transparent plexiglass tubes wrapped with different spectral cut-off filter foils and positioned at fixed depths in shallow waters for 7-9 days. At regular intervals, chlorophyll fluorescence of photosystem II (optimum quantum yield, Fv/Fm) was determined, as an indicator of photosynthetic performance. The data demonstrate that shallow-water species such as P. palmata are much less affected by natural photosynthetically active radiation (PAR) and UV radiation near the surface than extremely sensitive deep-water species such as Phyc. rubens which exhibited strong decreases in photosynthetic performance, as well as photobleaching of part of the thallus. The other species showed intermediate response patterns. In most species investigated inhibition of photosynthesis was mainly caused by the UV-B wavelengths. Interpretation of the data clearly indicates species-specific tolerances of photosynthesis to ambient solar radiation which can be explained by broad physiological acclimation potentials and/or genetic adaptation to certain (low or high) irradiances. The species-specific photosynthetic performance under radiation stress is in good accordance with the vertical distribution of the macroalgae on the shore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号