首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RON is a transmembrane receptor tyrosine kinase that mediates biological activities of Macrophage Stimulating Protein (MSP). MSP is a multifunctional factor regulating cell adhesion, motility, growth and survival. MSP binding to RON causes receptor tyrosine phosphorylation leading to up-regulation of RON catalytic activity and subsequent activation of downstream signaling molecules. Recent studies show that RON is spatially and functionally associated with other transmembrane molecules including adhesion receptors integrins and cadherins, and cytokine and growth factor receptors IL-3 betac, EPOR and MET. For example, MSP-induced cell shape change is mediated via RON-activated IL-3 betac receptor. Activation of integrins causes MSP-independent RON phosphorylation, and the integrin/RON collaboration regulates cell survival. Thus, RON can be activated without MSP by ligand stimulation of RON-associated receptors, and MSP-activated RON can cause ligand-independent activation of RON-associated receptors. As a result of the receptor cross-activation RON-specific pathways become a part of a signal transduction network of other receptors, and conversely signaling pathways activated by other receptors can be used by RON. This receptor collaboration extends the spectrum of cellular responses generated by MSP and by putative ligands of RON-associated receptors. However signaling pathways involved in the receptor cross-talk and underlying activation mechanisms remain to be investigated. The purpose of this review is to summarize data and to discuss a role of cross-talk between RON and other transmembrane receptors.  相似文献   

2.
MSP is a serum protein belonging to the plasminogen-related kringle domain protein family. In addition to macrophages, epithelial cells are also MSP targets. MSP is a multifunctional factor regulating cell adhesion and motility, growth and survival. MSP mediates its biological activities by activating a transmembrane receptor tyrosine kinase called RON in humans or SKT in mice. MSP can protect epithelial cells from apoptosis by activating two independent signals in the PI3-K/AKT or the MAPK pathway. The MAPK pathway mediates the MSP anti-apoptotic effect only if additional signaling pathways are activated through adhesion. This indicates that MSP receptors and integrins, the receptors mediating cell-matrix-dependent adhesion, can collaborate in promotion of cell survival. This adhesion-dependent pathway, which is essential for the MAPK-mediated anti-apoptotic effect, remains to be identified. A hypothesis that Stat3 might represent a key component of the adhesion-induced anti-apoptotic pathway is presented in this review.  相似文献   

3.
In addition to its effects on macrophage function, macrophage-stimulating protein (MSP) is a growth and motility factor for epithelial cells. The growth and survival of epithelial cells generally require two signals, one generated by interaction with extracellular matrix via integrins, the other initiated by a growth factor. Therefore we investigated the effect of MSP on epithelial cell survival. Survival of epithelial cells cultured overnight in serum-free medium was promoted by adhesion, which activated both the phosphatidylinositol 3'-kinase (PI3-K)/AKT and mitogen-activated protein kinase (MAPK) pathways, operating independently of one another. The number of apoptotic cells resulting from inhibition of either pathway alone was approximately doubled by simultaneous inhibition of both pathways. This shows that each pathway made a partial contribution to the prevention of apoptosis. In the presence of an inhibitor of either pathway, MSP increased the activity of the other pathway so that the single uninhibited pathway alone was sufficient to prevent apoptosis. In contrast to the results with adherent cells, although MSP also prevented apoptosis of cells in suspension (anoikis), its effect was mediated only by the PI3-K/AKT pathway. Despite activation of MAPK by MSP, anoikis was not prevented in suspended cells with a blocked PI3-K/AKT pathway. Thus, activation of MAPK alone is not sufficient to mediate MSP antiapoptotic effects. Cell adhesion generates an additional signal, which is essential for MSP to use MAPK in an antiapoptotic pathway. This may involve translocation of MSP-activated MAPK from the cytoplasm into the nucleus, which occurs only in adherent cells. Our results suggest that there is cross talk between cell matrix adhesion and growth factors in the regulation of cell survival via the MAPK pathway. Growth factors induce MAPK activation, and adhesion mediates MAPK translocation from the cytoplasm into the nucleus.  相似文献   

4.
We have assessed characteristics of primary human osteoblasts, shedding light on signaling mediated by beta1 integrin. beta1 integrins are major receptors for these matrix glycoproteins. 1) Integrins beta1, alpha2, alpha3, alpha4, alpha5, alpha6, and alphav were highly expressed on primary osteoblasts. 2) Engagement of beta1 integrins on osteoblasts by cross-linking with specific antibody or ligand matrices, such as fibronectin or collagen, augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor kappaB ligand (RANKL) on the surface. 3) Up-regulation of ICAM-1 and RANKL on osteoblasts by beta1 stimulation was completely abrogated by pretreatment with herbimycin A and genistein, tyrosine kinase inhibitors, or transfection of dominant negative truncations of focal adhesion kinase (FAK). 4) Engagement of beta1 integrins on osteoblasts induced tartrate-resistant acid phosphatase-positive multinuclear cell formation in the coculture system of osteoblasts and peripheral monocytes. 5) Up-regulation of tartrate-resistant acid phosphatase-positive multinuclear cell formation by beta1 stimulation was completely abrogated by transfection of dominant negative truncations of FAK. Our results indicate that beta1 integrin-dependent adhesion of osteoblasts to bone matrices induces ICAM-1 and RANKL expression and osteoclast formation via tyrosine kinase, especially FAK. We here propose that beta1 integrin/FAK-mediated signaling on osteoblasts could be involved in ICAM-1- and RANKL-dependent osteoclast maturation.  相似文献   

5.
6.
Stimulation of T cells via the CD3--T-cell receptor (TCR) complex results in rapid increases in beta 1 integrin-mediated adhesion via poorly defined intracellular signaling events. We demonstrate that TCR-mediated activation of beta 1 integrins requires activation of the Tec family tyrosine kinase Itk and phosphatidylinositol 3-kinase (PI 3-K)-dependent recruitment of Itk to detergent-insoluble glycosphingolipid-enriched microdomains (DIGs) via binding of the pleckstrin homology domain of Itk to the PI 3-K product PI(3,4,5)-P(3). Activation of PI 3-K and the src family kinase Lck, via stimulation of the CD4 co-receptor, can initiate beta 1 integrin activation that is dependent on Itk function. Targeting of Itk specifically to DIGs, coupled with CD4 stimulation, can also activate beta 1 integrin function independently of TCR stimulation. Changes in beta 1 integrin function mediated by TCR activation of Itk are also accompanied by Itk-dependent modulation of the actin cytoskeleton. Thus, TCR-mediated activation of beta 1 integrins involves membrane relocalization and activation of Itk via coordinate action of PI 3-K and a src family tyrosine kinase.  相似文献   

7.
8.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

9.
Cooperation between integrins and growth factor receptors plays an important role in the regulation of cell growth, differentiation, and survival. The function of growth factor receptor tyrosine kinases (RTKs) can be regulated by cell adhesion to extracellular matrix (ECM) even in the absence of ligand. We investigated the pathway involved in integrin-mediated RTK activation, using RON, the receptor for macrophage-stimulating protein. Adhesion of RON-expressing epithelial cells to ECM caused phosphorylation of RON, which depended on the kinase activity of both RON itself and c-Src. This conclusion is based on these observations: 1) ECM-induced RON phosphorylation was inhibited in cells expressing kinase-inactive c-Src; 2) active c-Src could phosphorylate immunoprecipitated RON from ECM-stimulated cells but not from unstimulated cells; and 3) ECM did not cause RON phosphorylation in cells expressing kinase-dead RON, nor could active c-Src phosphorylate RON immunoprecipitated from these cells. The data fit a pathway in which ECM-induced integrin aggregation causes both c-Src activation and RON oligomerization followed by RON kinase-dependent autophosphorylation; this results in RON becoming a target for activated c-Src, which phosphorylates additional tyrosines on RON. Integrin-induced epidermal growth factor receptor (EGFR) phosphorylation also depended on both EGFR and c-Src kinase activities. This sequence appears to be a general pathway for integrin-dependent growth factor RTK activation.  相似文献   

10.
11.
《The Journal of cell biology》1995,131(6):1867-1880
The rapid and reversible upregulation of the functional activity of integrin receptors on T lymphocytes is a vital step in the adhesive interactions that occur during successful T cell recognition of foreign antigen and transendothelial migration. Although the ligation of several different cell surface receptors, including the antigen- specific CD3/T cell receptor complex, the CD2, CD7, and CD28 antigens, as well as several chemokine receptors, has been shown to rapidly upregulate integrin function, the intracellular signaling events that initiate this increase in adhesion remain poorly defined. In this study, we have used DNA-mediated gene transfer to explore the role of phosphatidylinositol 3-kinase (PI 3-K) in the upregulation of beta 1 integrin functional activity mediated by the CD2 antigen. CD2 was expressed in the myelomonocytic cell line HL60, which expresses beta 1 integrins that mediate adhesion to fibronectin and VCAM-1 in an activation-dependent manner. Antibody stimulation of CD2 expressed on HL60 transfectants resulted within minutes in increased beta 1-mediated adhesion to fibronectin and VCAM-1 at levels comparable to that obtained upon stimulation with the phorbol ester PMA. A role for PI 3-K in CD2-mediated increases in beta 1 integrin function is suggested by: (a) the ability of the PI 3-K inhibitor wortmannin to completely inhibit CD2-induced increases in beta 1 integrin activity; (b) the association of PI 3-K with CD2; and (c) induced PI 3-K activity upon CD2 stimulation. The mode of association of PI 3-K with CD2 is not mediated by tyrosine phosphorylation-dependent binding of PI 3-K via SH2 domains, since: (a) PI 3-K is associated with CD2 in unstimulated cells; (b) CD2 stimulation fails to increase the amount of associated PI 3-K; and (c) the CD2 cytoplasmic domain lacks tyrosine residues. A role for both protein kinase C and cytoskeletal rearrangements in CD2 regulation of integrin activity is also suggested, since a PKC inhibitor partially inhibits CD2-induced increases in beta 1 integrin function, and CD2 stimulation increases F-actin content in a wortmannin- sensitive manner. Analysis of human peripheral T cells indicated that CD2 stimulation also results in PI 3-K-dependent upregulation of beta 1 integrin activity. Thus, these results demonstrate that CD2 can function as an adhesion regulator in the absence of expression of the CD3/T cell receptor complex; and directly implicate PI 3-K as a critical intracellular mediator involved in the regulation of beta 1 integrin functional activity by the CD2 antigen.  相似文献   

12.
The macrophage colony-stimulating factor (M-CSF, CSF-1) regulates survival, proliferation and differentiation of mononuclear phagocytes, as well as macrophage motility and morphology. The latter features are usually regulated by ECM-mediated activation of integrins and subsequent tyrosine phosphorylation of cellular proteins, including focal adhesion kinase (FAK). FAK is phosphorylated by downstream receptor tyrosine kinases as well. We addressed the question whether M-CSF regulates FAK tyrosine phosphorylation in macrophages, and found that M-CSF induces FAK phosphorylation at all known tyrosine residues. This phosphorylation was dependent on Src. Extracellularly-regulated kinase (ERK), Jun N-terminal kinase (JNK) and phosphatidylinositol-3-kinase (PI3K) were found to be negatively involved in M-CSF-induced FAK phosphorylation, as their inhibition resulted in FAK hyper-phosphorylation. Following M-CSF treatment, FAK and the active forms of M-CSFR and Src were redistributed to the cytoskeleton, where active ERK, JNK and PI3K were detectable. Immunofluorescence showed the presence of FAK and its active form in focal complexes following M-CSF treatment. Moreover, cell spreading and adhesion were impaired when FAK tyrosine phosphorylation was abrogated by either transfection with FRNK, a dominant negative form of FAK, or treatment with a number of inhibitors of upstream FAK-activating signals. These results point to a relevant role for FAK in the regulation of cell spreading and adhesion in macrophages.  相似文献   

13.
14.
Adhesive interactions play important roles in coordinating T cell migration and activation, which are mediated by binding of integrins to RGD motif found on extracellular matrix proteins. Disintegrins, isolated from snake venoms, contain the RGD sequence that confers selectivity to integrin interaction. We have investigated the ability of three RGD-disintegrins, ligands of alpha(5)beta(1) and alpha(v)beta(3), Flavoridin (Fl), Kistrin (Kr) and Echistatin (Ech), in modulating the activation of human T lymphocyte. The disintegrins induced T cell proliferation and CD69 expression. This activation parallels with actin cytoskeleton reorganization and tyrosine phosphorylation. Furthermore, the peptides induced focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) activation. Finally, RGD-disintegrins were capable of driving NF-kappaB nuclear translocation and c-Fos expression, in a PI3K and ERK1/2 activities dependent manner. This report is the first to show that RGD-disintegrins interact with integrins on human T lymphocyte surface, modulating cell proliferation and activation of specific pathways coupled to integrin receptor.  相似文献   

15.
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility.  相似文献   

16.
Insulin plays an important role in muscle cell survival and proliferation. However, there is no report showing the role of insulin in spreading of muscle cells. In the present report, we showed that insulin enhances muscle cell spreading concomitant with enhanced tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. Moreover, insulin can stimulate the cell spreading even in presence of integrin alpha5 blockers although to a lesser extent as compared to control. Cell adhesion was not dependent on insulin and serum, and decreased in presence of integrin blockers. We found direct association of FAK with affinity purified insulin receptors using in vitro kinase assay. The increase in FAK tyrosine phosphorylation was associated with increase in its kinase activity and further supported by increased phosphotyrosine accumulation on focal adhesions and increased membrane localization of FAK after stimulation by insulin. Moreover, insulin-mediated muscle cell spreading was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase) activity. PI 3-kinase activity was found to be associated with FAK and the FAK associated PI 3-kinase activity enhanced when cells were plated in presence of insulin. We also observed activation of MAP kinases, i.e., ERK-1/-2 during insulin mediated muscle cell spreading. In conclusion, FAK, PI 3-kinase, and MAP kinase are important components of pathway(s) that regulate insulin stimulated muscle cell spreading.  相似文献   

17.
Interaction between the major fimbriae of Porphyromonas gingivalis and gingival epithelial cells is important for bacterial adhesion and invasion. In this study, we identified integrins as an epithelial cell cognate receptor for P. gingivalis fimbriae. Immunoprecipitation and direct binding assays revealed a physical association between recombinant fimbrillin and beta1 integrins. In vitro adhesion and invasion assays demonstrated inhibition of binding and invasion of P. gingivalis by beta1 integrin antibodies. In contrast, invasion of a fimbriae-deficient mutant of P. gingivalis was not affected by integrin antibodies. Infection of gingival epithelial cells with wild-type P. gingivalis induced tyrosine phosphorylation of the 68 kDa focal adhesion protein paxillin, whereas the fimbriae-deficient mutant failed to evoke similar changes. Interestingly, activation of paxillin was not accompanied by an increase in the phosphorylation of focal adhesion kinase (FAK). These results provide evidence that P. gingivalis fimbriae promote adhesion to gingival epithelial cells through interaction with beta1 integrins, and this association represents a key step in the induction of the invasive process and subsequent cell responses to P. gingivalis infection.  相似文献   

18.
Upregulated epidermal growth factor (EGF) receptor (EGFR) expression and EGFR-induced signaling have been correlated with progression to invasion and metastasis in a wide variety of carcinomas, but the mechanism behind this is not well understood. We show here that, in various human carcinoma cells that overexpress EGFR, EGF treatment induced rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) associated with downregulation of its kinase activity. The downregulation of FAK activity was both required and sufficient for EGF-induced refractile morphological changes, detachment of cells from the extracellular matrix, and increased tumor cell motility, invasion, and metastasis. Tumor cells with downregulated FAK activity became less adherent to the extracellular matrix. However, once cells started reattaching, FAK activity was restored by activated integrin signaling. Moreover, this process of readhesion and spreading could not be abrogated by further EGF stimulation. Interruption of transforming growth factor alpha-EGFR autocrine regulation with an EGFR tyrosine kinase inhibitor led to a substantial increase in FAK tyrosine phosphorylation and inhibition of tumor cell invasion in vitro. Consistent with this, FAK tyrosine phosphorylation was reduced in cells from tumors growing in transplanted, athymic, nude mice, which have an intact autocrine regulation of the EGFR. We suggest that the dynamic regulation of FAK activity, initiated by EGF-induced downregulation of FAK leading to cell detachment and increased motility and invasion, followed by integrin-dependent reactivation during readhesion, plays a role in EGF-associated tumor invasion and metastasis.  相似文献   

19.
Integrin-mediated cell adhesion activates several signaling effectors, including phosphatidylinositol 3-kinase (PI3K), a central mediator of cell motility and survival. To elucidate the molecular mechanisms of this important pathway the specific members of the PI3K family activated by different integrins have to be identified. Here, we studied the role of PI3K catalytic isoforms in β1 integrin-induced lamellipodium protrusion and activation of Akt in fibroblasts. Real-time total internal reflection fluorescence imaging of the membrane–substrate interface demonstrated that β1 integrin-mediated attachment induced rapid membrane spreading reaching essentially maximal contact area within 5–10 min. This process required actin polymerization and involved activation of PI3K. Isoform-selective pharmacological inhibition identified p110α as the PI3K catalytic isoform mediating both β1 integrin-induced cell spreading and Akt phosphorylation. A K756L mutation in the membrane-proximal part of the β1 integrin subunit, known to cause impaired Akt phosphorylation after integrin stimulation, induced slower cell spreading. The initial β1 integrin-regulated cell spreading as well as Akt phosphorylation were sensitive to the tyrosine kinase inhibitor PP2, but were not dependent on Src family kinases, FAK or EGF/PDGF receptor transactivation. Notably, cells expressing a Ras binding-deficient p110α mutant were severely defective in integrin-induced Akt phosphorylation, but exhibited identical membrane spreading kinetics as wild-type p110α cells.We conclude that p110α mediates β1 integrin-regulated activation of Akt and actin polymerization important for survival and lamellipodia dynamics. This could contribute to the tumorigenic properties of cells expressing constitutively active p110α.  相似文献   

20.
Integrins and cell signaling in chondrocytes   总被引:7,自引:0,他引:7  
Loeser RF 《Biorheology》2002,39(1-2):119-124
Integrins are adhesion receptor heterodimers that transmit information from the extracellular matrix (ECM) to the cell through activation of cell signaling pathways. Chondrocytes express several members of the integrin family including alpha5beta1 which is the primary chondrocyte receptor for fibronectin. Cell signaling mediated through integrins regulates several chondrocyte functions including differentiation, matrix remodeling, responses to mechanical stimulation and cell survival. Integrin-mediated activation of members of the mitogen-activated protein kinase family likely plays a key role in transmitting signals regulating chondrocyte gene expression. Upstream mediators of mitogen-activated protein kinase (MAP kinase) activation include focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (pyk2) which are both expressed by chondrocytes. A better understanding of chondrocyte integrin signaling is needed to define the mechanisms by which the ECM regulates chondrocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号