首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of the secondary messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is crucial in the hormonal regulation of bone metabolism. Both cAMP and cGMP are inactivated by cyclic nucleotide phosphodiesterases (PDEs), a superfamily of enzymes divided into 11 families (PDE1-11). We compared the PDEs of cultured human osteoblasts (NHOst) and SaOS-2 osteosarcoma cells. The PDE activity of NHOst cells consisted of PDE1, PDE3 and PDE7, whereas PDE1, PDE7 and PDE4, but no PDE3 activity was detected in SaOS-2 cells. In line with the difference in the PDE profiles, rolipram, a PDE4 inhibitor, increased the accumulation of cAMP in SaOS-2, but not in NHOst cells. Expression of PDE subtypes PDE1C, PDE3A, PDE4A, PDE4B, PDE7A and PDE7B was detected in both cell types. NHOst cells additionally expressed PDE1A.  相似文献   

2.
3.
4.
5.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that serve as drug targets in many human diseases. There is a continuing need to identify high-specificity inhibitors that affect individual PDE families or even subtypes within a single family. The authors describe a fission yeast-based high-throughput screen to detect inhibitors of heterologously expressed adenosine 3',5'-cyclic monophosphate (cAMP) PDEs. The utility of this system is demonstrated by the construction and characterization of strains that express mammalian PDE2A, PDE4A, PDE4B, and PDE8A and respond appropriately to known PDE2A and PDE4 inhibitors. High-throughput screens of 2 bioactive compound libraries for PDE inhibitors using strains expressing PDE2A, PDE4A, PDE4B, and the yeast PDE Cgs2 identified known PDE inhibitors and members of compound classes associated with PDE inhibition. The authors verified that the furanocoumarin imperatorin is a PDE4 inhibitor based on its ability to produce a PDE4-specific elevation of cAMP levels. This platform can be used to identify PDE activators, as well as genes encoding PDE regulators, which could serve as targets for future drug screens.  相似文献   

6.
Phosphodiesterase-6 (PDE6) is the key effector enzyme of the phototransduction cascade in rods and cones. The catalytic core of rod PDE6 is a unique heterodimer of PDE6A and PDE6B catalytic subunits. The functional significance of rod PDE6 heterodimerization and conserved differences between PDE6AB and cone PDE6C and the individual properties of PDE6A and PDE6B are unknown. To address these outstanding questions, we expressed chimeric homodimeric enzymes, enhanced GFP (EGFP)-PDE6C-A and EGFP-PDE6C-B, containing the PDE6A and PDE6B catalytic domains, respectively, in transgenic Xenopus laevis. Similar to EGFP-PDE6C, EGFP-PDE6C-A and EGFP-PDE6C-B were targeted to the rod outer segments and concentrated at the disc rims. PDE6C, PDE6C-A, and PDE6C-B were isolated following selective immunoprecipitation of the EGFP fusion proteins. All three enzymes, PDE6C, PDE6C-A, and PDE6C-B, hydrolyzed cGMP with similar K(m) (20-23 μM) and k(cat) (4200-5100 s(-1)) values. Likewise, the K(i) values for PDE6C, PDE6C-A, and PDE6C-B inhibition by the cone- and rod-specific PDE6 γ-subunits (Pγ) were comparable. Recombinant cone transducin-α (Gα(t2)) and native rod Gα(t1) fully and potently activated PDE6C, PDE6C-A, and PDE6C-B. In contrast, the half-maximal activation of bovine rod PDE6 required markedly higher concentrations of Gα(t2) or Gα(t1). Our results suggest that PDE6A and PDE6B are enzymatically equivalent. Furthermore, PDE6A and PDE6B are similar to PDE6C with respect to catalytic properties and the interaction with Pγ but differ in the interaction with transducin. This study significantly limits the range of mechanisms by which conserved differences between PDE6A, PDE6B, and PDE6C may contribute to remarkable differences in rod and cone physiology.  相似文献   

7.
The most recently identified cyclic nucleotide phosphodiesterases, PDE10 and PDE11, contain a tandem of so-called GAF domains in their N-terminal regulatory regions. In PDE2 and PDE5, the GAF domains mediate cGMP stimulation; however, their function in PDE10 and PDE11 remains controversial. Although the GAF domains of PDE10 mediate cAMP-induced stimulation of chimeric adenylyl cyclases, cAMP binding did not stimulate the PDE10 holoenzyme. Comparable data about cGMP and the PDE11 GAF domains exist. Here, we identified synthetic ligands for the GAF domains of PDE10 and PDE11 to reduce interference of the GAF ligand with the catalytic reaction of PDE. With these ligands, GAF-mediated stimulation of the PDE10 and PDE11 holoenzymes is demonstrated for the first time. Furthermore, PDE10 is shown to be activated by cAMP, which paradoxically results in potent competitive inhibition of cGMP turnover by cAMP. PDE11, albeit susceptible to GAF-dependent stimulation, is not activated by the native cyclic nucleotides cAMP and cGMP. In summary, PDE11 can be stimulated by GAF domain ligands, but its native ligand remains to be identified, and PDE10 is the only PDE activated by cAMP.  相似文献   

8.
Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.  相似文献   

9.
10.
Adipocyte lipolysis is dependent on an increase in the intracellular concentration of cAMP. Intracellular phosphodiesterases (PDEs) hydrolyze cAMP and limit stimulation of lipolysis. In the present study, the mRNA expression of PDE4 subtypes and the antilipolytic role of PDE4 in rat adipocytes were investigated. Fragments encoding PDE4A (233 bp), PDE4B (786 bp), PDE4C (539 bp), and PDE4D (262 bp) sequences were amplified by RT-PCR. The mRNA expression of PDE4 subtypes (A, B, C, D) determined by real-time quantitative PCR was 7, 18.7, 18.9, and 7.2% relative to PDE3B. Inhibition of PDE4 by rolipram increased basal lipolysis and reversed in part prostaglandin E2 antilipolysis. The combination of PDE3 and PDE4 inhibitors synergistically reversed both prostaglandin E2 and phenylisopropyl adenosine antilipolysis. Stimulation of adipocytes with prostaglandin E2 increased total PDE activity and PDE3 activity measured by hydrolysis of 3[H]cAMP by the particulate fraction of adipocytes. The present study confirmed that mRNAs for all four PDE4 subtypes were expressed in rat adipocytes, with PDE4B and PDE4C predominant. Moreover, PDE4 not only limits the rate of basal lipolysis but also contributes to prostaglandin E2 antilipolysis in rat adipocytes.  相似文献   

11.
Previously, we have domain-mapped the 87 amino acid PDE gamma inhibitory subunit of the retinal phosphodiesterase (PDE) alpha beta gamma 2 complex using synthetic peptides. The PDE gamma subunit has a binding domain for transducin-alpha (T alpha) and for PDE alpha/beta within residues # 24-45 and an inhibitory region for PDE alpha/beta within residues # 80-87. In order to establish the role of individual amino acids in the function of the PDE gamma inhibitory subunit, peptides of PDE gamma # 63-87 and mutant peptides were synthesized and utilized in PDE inhibition assays. The following peptides exhibited a decreased ability to inhibit PDE alpha/beta: All were from PDE gamma # 63-87; PDE gamma Tyr 84----Gly, PDE gamma Phe 73----Gly and PDE gamma Gln 83----Gly.  相似文献   

12.
We have isolated cDNAs encoding PDE4A8 (phosphodiesterase 4 isoform A8), a new human cAMP-specific PDE4 isoform encoded by the PDE4A gene. PDE4A8 has a novel N-terminal region of 85 amino acids that differs from those of the related 'long' PDE4A4, PDE4A10 and PDE4A11 isoforms. The human PDE4A8 N-terminal region has diverged substantially from the corresponding isoforms in the rat and other mammals, consistent with rapid evolutionary change in this region of the protein. When expressed in COS-7 cells, PDE4A8 localized predominantly in the cytosol, but approx. 20% of the enzyme was associated with membrane fractions. Cytosolic PDE4A8 was exquisitely sensitive to inhibition by the prototypical PDE4 inhibitor rolipram (IC(50) of 11+/-1 nM compared with 1600 nM for PDE4A4), but was less sensitive to inhibition by cilomilast (IC(50) of 101+/-7 nM compared with 61 nM for PDE4A4). PDE4A8 mRNA was found to be expressed predominantly in skeletal muscle and brain, a pattern that differs from the tissue expression of other human PDE4 isoforms and also from that of rat PDE4A8. Immunohistochemical analysis showed that PDE4A8 could be detected in discrete regions of human brain, including the cerebellum, spinal cord and cerebral cortex. The unique tissue distribution of PDE4A8, combined with the evolutionary divergence of its N-terminus, suggest that this isoform may have a specific function in regulating cAMP levels in human skeletal muscle and brain.  相似文献   

13.
Phosphodiesterase type 3 (PDE3) is an important regulator of cAMP-mediated responses within the cardiovascular system. PDE3 exists as two subtypes: PDE3A and PDE3B, with distinct cellular and subcellular locations. Due to the lack of subtype-specific pharmacological tools, the definitive role of each subtype in regulating cardiovascular function has not been determined. In this study, we investigated platelet and cardiac function, using PDE3A and PDE3B gene knockout (KO) mice. Platelet-rich-plasma was prepared from the blood of KO and age-matched wild-type (WT) mice. PGE1 (1 microg/mL) almost completely inhibited aggregation of platelets from WT, PDE3A KO and PDE3B KO mice. In platelets from WT mice, cilostamide (100 microM), a selective PDE3 inhibitor, blocked collagen- and ADP-induced aggregation. In contrast, cilostamide had no effect on aggregation of platelets from PDE3A KO mice. In PDE3B KO mice, inhibition of collagen- and ADP-induced platelet aggregation was similar to that in WT mice. The resting intra-platelet cAMP concentration in platelets from PDE3A KO mice was twice that in the WT platelets. After PGE1 (0.1 microg/mL) stimulation, intra-cellular cAMP concentration was increased significantly more in platelets from PDE3A KO mice compared to WT mice. In vivo, PDE3A KO mice were protected against collagen/epinephrine-induced pulmonary thrombosis and death, while no such protection was observed in PDE3B KO mice. The heart rate of PDE3A KO mice was significantly higher, compared with age-matched WT mice, while that of PDE3B KO mice was similar to WT. There was no difference in cardiac contractility between PDE3A or PDE3B KO mice. Heart rate and contractility were increased in a similar dose-dependent fashion by isoproterenol in both types of KO mice. Cilostamide increased heart rate and contractility in WT and PDE3B KO but not in PDE3A KO mice. Compared to WT and PDE3B KO mice, cyclic AMP-PDE activity in membrane fractions prepared from the hearts of PDE3A KO mice was lower and not inhibited by cilostamide. The data suggest that PDE3A is the main subtype of PDE3 expressed in platelets and cardiac ventricular myocytes, and is responsible for the functional changes caused by PDE3 inhibition.  相似文献   

14.
DEAE-cellulose chromatography of mycelial extracts of Mucor rouxii grown to mid-exponential phase resolves two types of low-Km cyclic AMP phosphodiesterase (EC 3.1.4.17; PDE): PDE I, highly activatable (4-6-fold) by phosphorylation or proteolysis, and PDE II, unresponsive to activation. The enzymic profile of PDE activity obtained from germlings shows only PDE I activity, whereas PDE activity from mycelia grown to stationary phase is eluted from the DEAE-cellulose column at the position of PDE II, and like PDE II is unresponsive to activation. Endogenous proteolysis or controlled trypsin treatment transforms PDE I into PDE II. The insensitive forms of PDE exhibit a slightly smaller sedimentation coefficient than the activatable forms, as judged by sucrose-gradient centrifugation. The basal activity of the highly activatable form of PDE is elevated almost to the value in the presence of trypsin on storage at 4 degrees C in the absence of proteinase inhibitors. Benzamidine, leupeptin, antipain or EGTA prevents the activation produced by storage. PDE I remains strongly activatable by phosphorylation and proteolysis after resolution by polyacrylamide-gel electrophoresis.  相似文献   

15.
Synthetic peptides corresponding to various regions of the light-activated guanosine 3',5'-cyclic monophosphate phosphodiesterase (PDE) gamma-subunit (PDE gamma) from bovine retinal rod outer segments were synthesized and tested for their ability to inhibit PDE activity, and GTPase activity of transducin. One of these peptides, corresponding to PDE gamma residues 31-45, inhibited PDE activity and GTPase activity in a dose-dependent manner. The GTPase activity was inhibited by PDE gamma-3 non-competitively. This region of the PDE gamma subunit may be involved in the direct interaction of transducin and PDE alpha beta with PDE gamma.  相似文献   

16.
The level of phosphodiesterase (PDE) activity is lower in collagenase-isolated human fat cells than in adipose tissue fragments. The inhibition is not species-specific since collagenase also inhibits PDE in rat adipose tissue and bovine heart. In subcellular fractions from isolated fat cells, the PDE activities were lowest in the plasma membrane-enriched fractions and highest in the cytosolic fractions. This is opposite to PDE in subcellular fractions obtained from adipose tissue fragments. In dose-response experiments, collagenase inhibited particulate PDE to a much larger extent than it inhibited soluble PDE. The extracellular activities of PDE were completely eliminated by collagenase. Repeated washings or reincubation of the isolated fat cells did not restore the PDE activity. A purified collagenase with low specific protease activity reduced the PDE activity in isolated fat cells to a lesser extent than did a collagenase with high specific protease activities. Collagen and several protease inhibitors were ineffective in preventing the reduction of PDE after exposure to collagenase. It is concluded that nonspecific proteases in the collagenase preparations used for fat cell isolation interact with particulate and soluble PDE causing an irreversible inhibition of PDE activity in isolated fat cells. Of the various forms of PDE, plasma membrane-associated PDE seems most sensitive to collagenase.  相似文献   

17.
Cyclic nucleotide signaling functions as a negative modulator of inflammatory cell responses, and type 4 phosphodiesterases (PDE4) are important regulators of this pathway. In this study, we provide evidence that only one of the three PDE4 genes expressed in mouse peritoneal macrophages is involved in the control of TLR signaling. In these cells, LPS stimulation of TLR caused a major up-regulation of PDE4B but not the paralogs PDE4A or PDE4D. Only ablation of PDE4B impacted LPS signaling and TNF-alpha production. TNF-alpha mRNA and protein were decreased by >50% in PDE4B-/-, but not in PDE4A-/- or PDE4D-/- macrophages. The PDE4 selective inhibitors rolipram and roflumilast had no additional inhibitory effect in macrophages deficient in PDE4B, but suppressed the TNF-alpha response in the other PDE4 null cells. The inhibition of TNF-alpha production that follows either genetic ablation or acute inhibition of PDE4B is cAMP-dependent and requires protein kinase A activity. However, no global changes in cAMP concentration were observed in the PDE4B-/- macrophages. Moreover, ablation of PDE4B protected mice from LPS-induced shock, suggesting that altered TLR signaling is retained in vivo. These findings demonstrate the highly specialized function of PDE4B in macrophages and its critical role in LPS signaling. Moreover, they provide proof of concept that a PDE4 inhibitor with subtype selectivity retains useful pharmacological effects.  相似文献   

18.
19.
A gene encoding a novel human 3', 5'-cyclic nucleotide phosphodiesterase (PDE) was identified and characterized. PDE10A1 encodes a protein that is 779 amino acids in length. An incomplete cDNA for a second 5'-splice variant, PDE10A2, was isolated. The proteins encoded by the two variants share 766 amino acids in common. This common region includes an amino-terminal domain with partial homology to the cGMP-binding domains of PDE2, PDE5 and PDE6 as well as a carboxy-terminal region with homology to the catalytic regions of mammalian PDEs. Northern analysis revealed that PDE10A is widely expressed. The PDE10A gene was mapped to three yeast artificial chromosomes (YACs) that contain human DNA from chromosome 6q26-27. A recombinant protein corresponding to the 766 amino acid region common to PDE10A1 and PDE10A2 was expressed in yeast. It hydrolyzed both cAMP and cGMP. Inhibitors that are selective for other PDE families are poor inhibitors of PDE10A; however, PDE10A is inhibited by the non-specific PDE inhibitor, IBMX.  相似文献   

20.
3':5'-Cyclic nucleotide phosphodiesterase was isolated from human brain and characterized. After the first stage of purification on phenyl-Sepharose, the enzyme activity was stimulated by Ca2+ and micromolar concentrations of cGMP. High pressure liquid chromatography on a DEAE-TSK-3SW column permitted to identify three ranges of enzymatic activity designated as PDE I, PDE II and PDE III. Neither of the three enzymes possessed a high selectivity for cAMP and cGMP substrates. The catalytic activity of PDE I and PDE II increased in the presence of Ca2+-calmodulin (up to 6-fold); the degradation of cAMP was decreased by cGMP. The Ca2+-calmodulin stimulated PDE I and PDE II activity was decreased by W-7. PDE I and PDE II can thus be classified as Ca2+-calmodulin-dependent phosphodiesterases. With cAMP as substrate, the PDE III activity increased in the presence of micromolar concentrations of cGMP (up to 10-fold), Ca2+ and endogenous calmodulin (up to 2-3-fold). No additivity in the effects of saturating concentrations of these compounds on PDE III was observed. Ca2+ did not influence the rate of cGMP hydrolysis catalyzed by PDE III. In comparison with PDE I and PDE II, the inhibition of PDE III was observed at higher concentrations of W-7 and was not limited by the basal level of the enzyme. These results do not provide any evidence in favour of the existence of several forms of the enzyme in the PDE III fraction. The double regulation of PDE III creates some difficulties for its classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号