首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soybean trypsin inhibitor (SBTI, Kunitz type) was localized by immunofluorescence and, at the ultrastructural level, by the protein A gold method on thin sections of Glycine max (soybean) cv. Maple Arrow. SBTI was localized in cell walls, protein bodies, the cytoplasm between the lipid-containing spherosomes, and the nucleus of the cotyledon and embryonic axis. In the nucleus, SBTI was present in the chromatin deposit and the nucleolus. The intensity of marking by the gold method decreased in the cell wall from the center of the cotyledon to the periphery. In four-days-old seedlings marking intensity of cell wall was much reduced. No SBTI could be detected in the hypocotyl. In two lines lacking soybean agglutinin (Norredo, T-102) the location of SBTI was similar to that observed in Maple Arrow. In P.I. 196168, a line lacking SBTI, marking intensity of the organelles was reduced to a very low level. Although this study was not designed to discern the cellular function of SBTI, if any, it may establish criteria consistent with its role in soybean.  相似文献   

2.
The soybean Bowman-Birk inhibitor (BBI), a polypeptide of MW 8,000, has a specificity directed against trypsin and chymotrypsin. BBI was localized at the ultrastructural level by the protein A gold method on thin sections of Glycine max (soybean) cv. Maple Arrow. In cotyledon and embryonic axis, BBI was found in all protein bodies, the nucleus and, to a lesser extent, the cytoplasm. Contrary to the Kunitz trypsin inhibitor (Horisberger and Tacchini-Vonlanthen 1983), BBI was not present in the cell wall but was found in the intercellular space. Intensity of marking in cotyledons of four-day-old seedlings was similar with the exception of the intercellular space which was free of BBI. In two lines lacking the Kunitz inhibitor (P.I. 157440 and 196168), data indicated that marking intensity was similar to that of cv. Maple Arrow. In contrast, in varieties lacking the lectin (Norredo, T-102) marking was more intense than in cv. Maple Arrow.  相似文献   

3.
Summary Soybean agglutinin (SBA) has been localized in Glycine max (soybean) var. Altona at the ultrastructural level by the gold method. SBA was detected by marking thin sections of different part of the seed with gold granules (12 nm in size) labelled with anti-SBA antiserum. Upon examination by transmission electron microscopy, the lectin was found uniformly distributed in most of the protein bodies of the cotyledon. SBA was also present in the embryo axis.  相似文献   

4.
The glycinin gene family encoding the glycinin subunits in soybean plants is composed of at least five gene members. A genomic clone S312 containing the Gy4 gene from a genomic library of cv. Forrest was isolated and partially characterized. The organization of this gene was found to be similar to that of a null allele from cv. Raiden, but different from the Gy4 gene from cv. Dare. The complete nucleotide sequence of this gene has been determined. It is 2599 bp long consisting of four exons and three introns. Comparing the DNA sequences between this gene and the gene from Dare and a null allele from Raiden, the difference found in the coding region was 5-GCAGTGCAAG-3 (nt 824 to 833) in the former case versus 5-TGGAGTTGCAATT-3 (nt 1314 to 1326) in the latter case in the exon 2 domain, resulting in three amino acid differences and one amino acid absence. Some other differences were also found in the non-coding region. The coding sequence and 5-flanking region of the Gy4 gene, when compared with that of other legumin genes as well as group 1 glycinin subunit genes, revealed some interesting features: (1) a transposable element-like sequence was found in the hypervariable region (HVR) of the exon 3 domain, which was lacking in the legumin and the glycinin group 1 genes; (2) in the 5-flanking region from nt –145 to –1, two high-homology sequences were found: one from nt –141 to nt –132, the other from nt –118 to nt –92 which includes the legumin box and the RY repeat element.  相似文献   

5.
6.
Soybean urease has been investigated extensively to reveal the presence of histidine residue (s) in the active site and their potential role in the catalysis. The spectrophotometric studies using diethylpyrocarbonate (DEP) showed the modification of 11.76 ± 0.1 histidine residues per mole of native urease. Therefore, the results are indicative of the presence of twelve histidine residues per urease molecule. It is presumed that the soybean urease, being a hexameric protein possess two histidine residues per subunit. Correlation plot showed that the complete inactivation of soybean urease corresponds to the modification of 1.97 histidine residues per subunit. Further, double logarithmic plot of kapp versus DEP concentration has resulted in a linear correlation and thereby demonstrating that only one of the two histidine residues per subunit is catalytically essential. Significant protection has been observed against inactivation when urea or acetohydroxamate (AHA) is incubated with DEP treated urease. The studies have demonstrated the presence of one histidine residue at the active site of soybean urease and its significance in catalysis.  相似文献   

7.
磷脂酰乙醇胺结合蛋白(PEBP,phosphatidyl ethanolamine-binding protein)基因家族在动物、植物和微生物中广泛存在,在控制植物开花和种子休眠中起重要作用。本研究对大豆PEBP基因家族进行了分析,发现了27个大豆PEBP基因的候选序列,其中16个具有完整PEBP结构域的全长序列被认为是大豆Gm PEBP家族基因。Gm PEBP基因分布在9条染色体上,基因结构高度保守。通过系统发生分析,可将大豆Gm PEBP基因家族成员分为FT-like、TFL1-like和MFT-like 3个亚族,并且发现Gm PEBP家族成员数目按照大豆物种特异性的方式进行了扩张。对重复基因的Ks分析表明,绝大多数重复基因主要由5900万年前和1300万年前的大豆基因组复制所致。  相似文献   

8.
Poly(A)-rich RNA was isolated from developing soybean seeds (Glycine max (L.) Merr.) and fractionated on linear log sucrose gradients. Two major fractions sedimenting at 18 S and 20 S were separated and then purified by further sucrose gradient fractionation. Both fractions were active as messengers when added to a rabbit reticulocyte lysate protein synthesis system. The 18 S fraction caused proteins migrating primarily to the 60,000-dalton region of a sodium dodecyl sulfate gel to be produced, while translation of the 20 S fraction preferentially directed the synthesis of polypeptides similar in size to the alpha and alpha' subunits of beta-conglycinin. Evidence that many of the 60,000-dalton polypeptides were related to glycinin and the high molecular weight 20 S translation products were related to beta-conglycinin was obtained by immunoprecipitation using monospecific antibodies against glycinin and beta-conglycinin, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the immunoprecipitated products revealed that the glycinin precursor region contained at least three different size components and that the family of glycinin precursors had larger apparent molecular weight (58,000-63,000) than the disulfide-linked complexes between acidic and basic glycinin subunits (57,000). Unlike the disulfide-linked glycinin complexes which were cleaved by disulfide reduction, glycinin precursors were insensitive to reducing agents. The alpha and alpha' subunits synthesized in vitro also had slightly larger apparent molecular weights than purified alpha and alpha' standards.  相似文献   

9.
QTL mapping of domestication-related traits in soybean (Glycine max)   总被引:5,自引:0,他引:5  
Liu B  Fujita T  Yan ZH  Sakamoto S  Xu D  Abe J 《Annals of botany》2007,100(5):1027-1038
BACKGROUND AND AIMS: Understanding the genetic basis underlying domestication-related traits (DRTs) is important in order to use wild germplasm efficiently for improving yield, stress tolerance and quality of crops. This study was conducted to characterize the genetic basis of DRTs in soybean (Glycine max) using quantitative trait locus (QTL) mapping. METHODS: A population of 96 recombinant inbred lines derived from a cultivated (ssp. max) x wild (ssp. soja) cross was used for mapping and QTL analysis. Nine DRTs were examined in 2004 and 2005. A linkage map was constructed with 282 markers by the Kosambi function, and the QTL was detected by composite interval mapping. KEY RESULTS: The early flowering and determinate habit derived from the max parent were each controlled by one major QTL, corresponding to the major genes for maturity (e1) and determinate habit (dt1), respectively. There were only one or two significant QTLs for twinning habit, pod dehiscence, seed weight and hard seededness, which each accounted for approx. 20-50 % of the total variance. A comparison with the QTLs detected previously indicated that in pod dehiscence and hard seededness, at least one major QTL was common across different crosses, whereas no such consistent QTL existed for seed weight. CONCLUSIONS: Most of the DRTs in soybeans were conditioned by one or two major QTLs and a number of genotype-dependent minor QTLs. The common major QTLs identified in pod dehiscence and hard seededness may have been key loci in the domestication of soybean. The evolutionary changes toward larger seed may have occurred through the accumulation of minor changes at many QTLs. Since the major QTLs for DRTs were scattered across only six of the 20 linkage groups, and since the QTLs were not clustered, introgression of useful genes from wild to cultivated soybeans can be carried out without large obstacles.  相似文献   

10.
In higher plants, plastids and mitochondria are the predominant carriers of extrachromosomal genetic information. There is interplay between the plastids, the mitochondria, and the nuclear genome. In soybean, Glycine max (L.) Merr., both nuclearly and maternally inherited chlorophyll-deficient mutants have been described. Conditional lethality previously was reported in soybean when maternally inherited chlorophyll-deficient mutant (Genetic Type T275) was crossed with nuclearly inherited yellow foliar malate dehydrogenase null mutants (Genetic Types T253 and T323). Our objective was to test for conditional lethality when maternally inherited yellow foliar mutants T278, T314, T315, T316, T319, and T320 were female parents and nuclearly inherited yellow foliar malate dehydrogenase null mutants T253 and T323 were male parents. Our results indicated conditional lethality in the F2 generation when any of the six cytoplasmically inherited yellow foliar mutants were female parents and either T253 or T323 were male parents. The physiological nature of conditional lethality is not known. Data indicate a common basis in soybean for conditional lethality among the cytoplasmically inherited yellow foliar mutants when crossed with the nuclearly inherited yellow foliar malate dehydrogenase null mutants. No interactions were observed between cytoplasmically inherited or nuclearly inherited green seed embryo mutants as female parents and either T253 or T323 as male parents.  相似文献   

11.
《The Journal of cell biology》1984,99(4):1324-1334
Monospecific antibodies to chicken gizzard actin, alpha-actinin, and filamin have been used to localize these proteins at the ultrastructural level: secondary cultures of 14-d-old chicken embryo lung epithelial cells and chicken heart fibroblasts were briefly lysed with either a 0.5% Triton X-100/0.25% glutaraldehyde mixture, or 0.1% Triton X-100, fixed with 0.5% glutaraldehyde, and further permeabilized with 0.5% Triton X-100, to allow penetration of the gold-conjugated antibodies. After immunogold staining (De Mey, J., M. Moeremans, G. Geuens, R. Nuydens, and M. De Brabander, 1981, Cell Biol. Int. Rep. 5:889-899), the cells were postfixed in glutaraldehyde-tannic acid and further processed for embedding and thin sectioning. This approach enabled us to document the distribution of alpha-actinin and filamin either on the delicate cortical networks of the cell periphery or in the densely bundled stress fibers and polygonal nets. By using antiactin immunogold staining as a control, we were able to demonstrate the applicability of the method to the microfilament system: the label was distributed homogeneously over all areas containing recognizable microfilaments, except within very thick stress fibers, where the marker did not penetrate completely. Although alpha-actinin specific staining was homogeneously localized along loosely-organized microfilaments, it was concentrated in the dense bodies of stress fibers. The antifilamin-specific staining showed a typically spotty or patchy pattern associated with the fine cortical networks and stress fibers. This pattern occurred along all actin filaments, including the dense bodies also marked by anti-alpha-actinin antibodies. The results confirm and extend the data from light microscopic investigations and provide more information on the structural basis of the microfilament system.  相似文献   

12.
Soybean agglutinin (SBA), is a noncovalently bound tetramer comprised of four identical subunits having a single N-glycan chain, Man9GlcNAc2, that is known to be essential for regeneration of the functional tetrameric structure from unfolded subunits. In this study, SBA was found to have strong affinity for concanavalin A, indicating that the N-glycans are extensively solvent-exposed. The susceptibilities of the N-glycans to alpha-mannosidase and endo-beta-N-acetylglucosaminidase revealed that their distal areas have nonreducing ends embedded among the subunits, whereas their proximal regions are solvent-exposed. Endo-beta-N-acetylglucosaminidase-digested SBA was unable to retain its conformation and gradually unfolded. Periodate-oxidized SBA, whose N-glycans closely correspond to the invariant pentasaccharide core, tended to dissociate into the subunits, but permitted to stay as folded monomers. This SBA species was capable of refolding from unfolded subunits but unable to form the functional tetramer. It seems probable that the proximal regions of the N-glycans function in the formation and stabilization of the subunit conformation, whereas the branches outside the invariant cores stabilize the tetrameric structure.  相似文献   

13.
In legumes, the number of root nodules is controlled by a mechanism called autoregulation. Recently, we found that the foliar brassinosteroid (BR), a plant growth-regulating hormone, systemically regulates the nodule number in soybean plants. In the present study we report that such down-regulation of root nodule formation by a BR may occur through a change of the polyamine contents, with the experimental evidence as follows. The foliar contents of both spermidine (Spd) and spermine (Spm) in the super-nodulating soybean mutant, En6500, were always lower than those in its parent line, Enrei. This lower Spd and Spm content accompanied a striking accumulation of putrescine (Put) in the former plant. This finding indicates that Spd and Spm biosynthesis from their precursor Put is repressed in En6500. The foliar treatments with Spd or Spm of En6500 led to a reduction of both nodule number and root growth. On the other hand, foliar treatment with MDL74038, a specific inhibitor of Spd biosynthesis, apparently increased the root nodule number in Enrei. Foliar application of brassinolide (BL) of En6500 increased the leaf Spd level and reduced the nodule number. These results suggested that BL-induced Spd synthesis in shoots might suppress the root nodule formation.  相似文献   

14.
Nucleotide sequences of cDNAs encoding soybean glycinin B4 polypeptide were compared in three soybean cultivars and two plant introductions of wild soybean Glycine soja. Only two nucleotide substitutions were found in three cultivars G. max, as compared with G. max and G. soja having nucleotide sequences which contain four nucleotide substitutions. These data serve as additional evidence, at molecular level, indicating the origin of G. max from G. soja. On the other hand, the time period required for four nucleotide substitutions' accumulation, as calculated from parameters of molecular evolution of 11S globulins, is much longer than the term having passed after soybean domestication.  相似文献   

15.
Xin D  Sun J  Wang J  Jiang H  Hu G  Liu C  Chen Q 《Molecular biology reports》2012,39(9):9047-9057
Microsatellites, or simple sequence repeats (SSRs), are very useful molecular markers for a number of plant species. We used a new publicly available module (TROLL) to extract microsatellites from the public database of soybean expressed sequence tag (EST) sequences. A total of 12,833 sequences containing di- to penta-type SSRs were identified from 200,516 non-redundant soybean ESTs. On average, one SSR was found per 7.25?kb of EST sequences, with the tri-nucleotide motifs being the most abundant. Primer sequences flanking the SSR motifs were successfully designed for 9,638 soybean ESTs using the software primer3.0 and only 59 pairs of them were found in earlier studies. We synthesized 124 pairs of the primers to determine the polymorphism and heterozygosity among eight genotypes of soybean cultivars, which represented a wide range of the cultivated soybean cultivars. PCR amplification products with anticipated SSRs were obtained with 81 pairs of primers; 36 PCR products appeared to be homozygous and the remaining 45 PCR products appeared to be heterozygous and displayed polymorphism among the eight cultivars. We further analysed the EST sequences containing 45 polymorphic EST-SSR markers using the programs BLASTN and BLASTX. Sequence alignment showed that 29 ESTs have homologous sequences and 15 ESTs could be classified into a Uni-gene cluster with comparatively convincing protein products. Among these 15 ESTs belonging to a Uni-gene cluster, 9 SSRs were located in 3'-UTR, 4 SSRs were located in the intron region and 2 SSRs were located in the CDS region. None of these SSRs was located in the 5'-UTR. These novel SSRs identified in the ESTs of soybean provide useful information for gene mapping and cloning in future studies.  相似文献   

16.
In chlorophylkras soybean ( Glycine max L.) cell suspensioo cultures glucose uptake has been studied using the analogue 3-O-methyIglucose. Uptake could be distinguished into: a) a high affinity phase with Km= 0.06 m M and b) a low affinity phase with Km 2.0 m M . The uptake of glucose was accompanied by H+-cotransport with a stoichiometry of 0.3 H+ per molecule 3-O-methylglucose. Experiments in which sugar uptake was measured in the presence of various inhibitors of respiration and photosynthesis demonstrated that the glucose uptake system was dependent on energy metabolism and the ATP-content of the cells. Efflux experiments in the presence of the uncoupler dinitrophenol confirmed this energy dependency. Glucose uptake did not decrease before the ATP-content of the cells had decreased considerably.  相似文献   

17.
Salt stress causes foliar chlorosis and scorch, plant stunting, and eventually yield reduction in soybean. There are differential responses, namely tolerance (excluder) and intolerance (includer), among soybean germplasm. However, the genetic and physiological mechanisms for salt tolerance is complex and not clear yet. Based on the results from the screening of the RA-452 x Osage mapping population, two F4:6 lines with extreme responses, most tolerant and most sensitive, were selected for a time-course gene expression study in which the 250 mM NaCl treatment was initially imposed at the V1 stage and continued for 24 h (hrs). Total RNA was isolated from the leaves harvested at 0, 6, 12, 24 h after the initiation of salt treatment, respectively. The RNA-Seq analysis was conducted to compare the salt tolerant genotype with salt sensitive genotype at each time point using RNA-Seq pipeline method. A total of 2374, 998, 1746, and 630 differentially expressed genes (DEGs) between salt-tolerant line and salt-sensitive line, were found at 0, 6, 12, and 24 h, respectively. The expression patterns of 154 common DEGs among all the time points were investigated, of which, six common DEGs were upregulated and seven common DEGs were downregulated in salt-tolerant line. Moreover, 13 common DEGs were dramatically expressed at all the time points. Based on Log2 (fold change) of expression level of salt-tolerant line to salt-sensitive line and gene annotation, Glyma.02G228100, Glyma.03G226000, Glyma.03G031000, Glyma.03G031400, Glyma.04G180300, Glyma.04G180400, Glyma.05 g204600, Glyma.08G189600, Glyma.13G042200, and Glyma.17G173200, were considered to be the key potential genes involving in the salt-tolerance mechanism in the soybean salt-tolerant line.  相似文献   

18.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

19.
Partitioning of nitrogen by soybeans ( Glycine max L. Merr. cv. Hodgson) grown in natural conditions was studied by successive exposures of root systems to 15N2 and periodical measurements of 15N distribution. Nitrogen derived from the atmosphere was mainly found in the aerial parts of the plants, and the stage of development exerted a strong influence on the initial 15N distribution (measured one week after incorporation). Until day 69 after sowing, leaf blades contained 47 to 57% of the fixed N. After that, reproductive structures attracted increasing proportions, 10 to 60% between days 69 and 92. Around day 82, stems and petioles stored up to 30% of the newly fixed N. During pod development and pod filling and until maturity, fixed N was remobilized from vegetative tissues and pod walls to seeds. These transfers first concerned the newly incorporated N, but at maturity 80 to 90% of the total was recovered in the seeds. The high mobility of N originating from the atmosphere as compared to that coming from the soil (vegetative tissues exported only 50% of their total N) seems to indicate that fixed N was at least partially integrated in a special pool. This was certainly the case at the later stage of N2 fixation, when a large portion of fixed N accumulated in the stems and petioles, probably in the form of storage compounds such as ureides for later transfer to the developing seeds. Further research is needed in order to investigate the nature and role of this pool in the nitrogen nutrition of soybeans.  相似文献   

20.
Summary Genetic analysis for germination percentage was carried out in the F3 and F4 generations of a diallel cross involving six promising genotypes of soybean. Results indicated a high amount of genetic variability and a moderately high heritability together with genetic advance, suggesting a possible improvement for this character through hybridization and selection. Correlations at different levels revealed a strong negative association of germination with only one seed character: seed weight. This observation was further confirmed from path coefficient analysis. These findings strongly suggest that to base selection on seed weight which may not influence the seed quality of soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号