首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In a study screening anaerobic microbes utilizing d-galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H2, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with d-galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294T, with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L−1 of H2, 0.36 ± 0.01 g L−1 of acetic acid, 0.44 ± 0.01 g L−1 of butyric acid, and 0.98 ± 0.03 g L−1 of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L−1 with the addition of 1.5 g L−1 of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L−1 of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L−1. Without adding sodium acetate, 2.75 g L−1 of hexanoic acid production from d-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from d-galactitol and d-glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na2S·9H2O.  相似文献   

2.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

3.
The lactose-negative yeast Rhodotorula glutinis 22P and the homofermentative lactic acid bacterium Lactobacillus helveticus 12A were cultured together in a cheese whey ultrafiltrate containing 42 g L−1 lactose. The chemical composition of the caroteno-protein has been determined. The carotenoid and protein contents are 248  μ g g−1 dry cells and 48.2% dry weight. Carotenoids produced by Rhodotorula glutinis 22P have been identified as β-carotene 15%, torulene 10%, and torularhodin 69%. After separating the cell mass from the microbial association, the exopolysaccharides synthesized by Rhodotorula glutinis 22P were isolated from the supernatant medium in a yield of 9.2 g L−1. The monosaccharide composition of the synthesized biopolymer was predominantly D-mannose (57.5%). Received 08 July 1996/ Accepted in revised form 11 December 1996  相似文献   

4.
A new yeast, isolated from natural osmophilic sources, produces d-arabitol as the main metabolic product from glucose. According to 18S rRNA analysis, the NH-9 strain belongs to the genus Kodamaea. The optimal culture conditions for inducing production of d-arabitol were 37 °C, neutral pH, 220 rpm shaking, and 5% inoculum. The yeast produced 81.2 ± 0.67 g L−1 d-arabitol from 200 g L−1 d-glucose in 72 h with a yield of 0.406 g g−1 glucose and volumetric productivity Q\textP Q_{\text{P}} of 1.128 g L−1 h−1. Semi-continuous repeated-batch fermentation was performed in shaker-flasks to enhance the process of d-arabitol production by Kodamaea ohmeri NH-9 from d-glucose. Under repeated-batch culture conditions, the highest volumetric productivity was 1.380 g L−1 h−1.  相似文献   

5.
Delta-endotoxin production by a strain of Bacillus thuringiensis subsp kurstakion complex media based on crude gruel and fish meal was investigated. High proteolytic activities were concomitantly produced with the bioinsecticide. In such complex media, the repressive regulation due to readily consumed carbon sources was partially overcome. In order to improve substrate assimilation, 0.5 g L−1 sodium chloride and 0.1% Tween-80 were supplemented to the production medium, increasing delta-endotoxin yields when using gruel concentrations below 59 g L−1. At and beyond 75 g L−1 gruel, delta-endotoxin yields were not affected in the presence of 0.5 g L−1 NaCl and 0.1% Tween-80, but proteolytic activity yields were remarkably reduced. Thus, the use of sodium chloride and Tween-80 allowed reduction of the initial gruel concentration to 42 g L−1 for the production of 3350 mg L−1 delta-endotoxin, while it was only 3800 mg L−1 with 92 g L−1 gruel. Moreover, similar to 0.5 g L−1 NaCl and 0.1% Tween-80, the use of 10 g L−1 sodium acetate significantly improved delta-endotoxin production and also reduced the proteolytic activity to 250 U ml−1. Received 05 November 1998/ Accepted in revised form 19 August 1999  相似文献   

6.
Batch and continuous cultivation of Anaerobiospirillum succiniciproducens were systematically studied for the production of succinic acid from whey. Addition of 2.5 g l−1 yeast extract and 2.5 g l−1 polypeptone per 10 g l−1 whey was most effective for succinic acid production from both treated and nontreated whey. When 20 g l−1 nontreated whey and 7 g l−1 glucose were used as cosubstrates, the yield and productivity of succinic acid reached at the end of fermentation were 95% and 0.46 g (l h)−1, respectively. These values were higher than those obtained using nontreated whey alone [93% and 0.24 g (l h)−1 for 20 g l−1 whey]. Continuous fermentation of A. succiniciproducens at an optimal dilution rate resulted in the production of succinic acid with high productivity [1.35 g (l h)−1], high conversion yield (93%), and higher ratio of succinic acid to acetic acid (5.1:1) from nontreated whey. Received: 23 July 1999 / Received revision: 17 November 1999 / Accepted: 24 December 1999  相似文献   

7.
Haemolymph samples were withdrawn from routinely active male intermoult Glyptonotus held at 0 ± 0.5°C, and analysed for blood-gas and acid-base variables. In both the arterialised (a) and venous (v) haemolymph, over 50% of the oxygen was transported as dissolved oxygen at PaO2 and PvO2 levels of 12.0 ± 1.15 and 7.70 ± 1.89 kPa, respectively. The maximum oxygen-carrying capacity of the haemocyanin (CmaxHcO2) was relatively low at 0.19 ± 0.05 mmol l−1, accompanied by relatively low protein and [Cu2+] levels indicating low circulating haemocyanin concentrations. Arterialised haemolymph had a mean pH of 7.88 ± 0.02(6) at a PCO2 of 0.12 ± 0.01(6) kPa and a bicarbonate level of 12.95 ± 0.80(6) mequiv l−1 with small differences in PCO2 and pH between arterial and venous haemolymph. The non-bicarbonate buffering capacity of Glyptonotus haemolymph was low at −2.0 mequiv l−1 HCO3 pH unit−1. Haemolymph [l-lactate] and [d-glucose] levels were similar at < 1 mmol l−1 in animals held in the laboratory and those sampled in Antarctica. The blood-gas and acid-base status of Glyptonotus haemolymph may be a reflection of the low and stable temperatures experienced by this Antarctic crustacean. Received: 14 August 1996 / Accepted: 3 November 1996  相似文献   

8.
A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D 12/D 2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l−1) and with a lowered overall content of initial yeast extract (5  g l−1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 °C and a second stage at pH 6.0, a temperature change from 40 °C to 45 °C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h−1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l−1 for lactic acid concentration and 9.72 g l−1 h−1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l−1  and 2.42 g l−1 h−1) respectively and the highest overall l(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). Received: 4 December 1997 / Received revision: 23 February 1998 / Accepted: 14 March 1998  相似文献   

9.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

10.
When Pseudomonas mendocina NK-01 was cultivated in a 200-L fermentor using glucose as carbon source, 0.316 g L−1 medium-chain-length polyhydroxyalkanoate (PHAMCL) and 0.57 g L−1 alginate oligosaccharides (AO) were obtained at the end of the process. GC/MS was used to characterize the PHAMCL, which was found to be a polymer mainly consisting of 3HO (3-hydroxyoctanoate) and 3HD (3-hydroxydecanoate). T m and T g values for the PHAMCL were 51.03°C and −41.21°C, respectively, by DSC. Its decomposition temperature was about 300°C. The elongation at break was 700% under 12 MPa stress. MS and GPC were also carried out to characterize the AO which had weight-average molecular weights of 1,546 and 1,029 Da, respectively, for the two main components at the end of the fermentation process. MS analysis revealed that the AO were consisted of β-d-mannuronic acid and/or α-l-guluronic acid, and the β-d-mannuronic acid and/or α-l-guluronic acid residues were partially acetylated at position C2 or C3.  相似文献   

11.
The maximum ethanol concentration produced from glucose in defined media at 45°C by the thermotolerant yeast Kluyveromyces marxianus IMB3 was 44 g L−1. Acclimatisation of the strain through continuous culture at ethanol concentrations up to 80 g L−1, shifted the maximum ethanol concentration at which growth was observed from 40 g L−1 to 70 g L−1. Four isolates were selected from the continuous culture, only one of which produced a significant increase in final ethanol concentration (50 ± 0.4 g L−1), however in subsequent fermentations, following storage on nutrient agar plates, the maximum ethanol concentration was comparable with the original isolate. The maximum specific ethanol production rates (approximately 1.5 g (gh)−1) were also comparable with the original strain except for one isolate (0.7 g (gh)−1). The specific ethanol productivity decreased with ethanol concentration; this decrease correlated linearly (rval 0.92) with cell viability. Due to the transience of induced ethanol tolerance in the strain it was concluded that this was not a valid method for improving final ethanol concentrations or production rates. Received 18 July 1997/ Accepted in revised form 19 February 1998  相似文献   

12.
Escherichia coli strains with foreign genes under the isopropyl-β-d-thiogalactopyranoside-inducible promoters such as lac, tac, and trc were engineered and considered as the promising succinic acid-producing bacteria in many reports. The promoters mentioned above could also be induced by lactose, which had not been attempted for succinic acid production before. Here, the efficient utilization of lactose as inducer was demonstrated in cultures of the ptsG, ldhA, and pflB mutant strain DC1515 with ppc overexpression. A fermentative process for succinic acid production at high level by this strain was developed. In flask anaerobic culture, 14.86 g l−1 succinic acid was produced from 15 g l−1 glucose with a yield of 1.51 mol mol−1 glucose. In two-stage culture carried out in a 3-l bioreactor, the overall yield and concentration of succinic acid reached to 1.67 mol mol−1 glucose and 99.7 g l−1, respectively, with a productivity of 1.7 g l−1 h−1 in the anaerobic stage. The efficient utilization of lactose as inducer made recombinant E. coli a more capable strain for succinic acid production at large scale.  相似文献   

13.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

14.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

15.
The aim of this work was to optimize the fermentation parameters in the shake-flask culture of marine bacterium Wangia sp. C52 to increase cold-adapted amylase production using two statistical experimental methods including Plackett–Burman design, which was applied to find the key ingredients for the best medium composition, and response surface methodology, which was used to determine the optimal concentrations of these components. The results showed starch, tryptone, and initial pH had significant effects on the cold-adapted amylase production. A central composite design was then employed to further optimize these three factors. The experimental results indicated that the optimized composition of medium was 6.38 g L−1 starch, 33.84 g L−1 tryptone, 3.00 g L−1 yeast extract, 30 g L−1 NaCl, 0.60 g L−1 MgSO4 and 0.56 g L−1 CaCl2. The optimized cultivation conditions for amylase production were pH 7.18, a temperature of 20°C, and a shaking speed of 180 rpm. Under the proposed optimized conditions, the amylase experimental yield (676.63 U mL−1) closely matched the yield (685.60 U mL−1) predicted by the statistical model. The optimization of the medium contributed to tenfold higher amylase production than that of the control in shake-flask experiments.  相似文献   

16.
Corn steep water (CSW) medium (1.6% solids plus 6% glucose) was evaluated for growth and butanol production by Clostridium beijerinckii NCIMB 8052 wild-type and hyper-amylolytic, hyper-butanol-producing mutant strain BA101. CSW alone was not a suitable substrate, whereas addition of glucose supported growth and butanol production by both strains. In a batch-scale fermentation using an optimized 6% glucose-1.6% solids CSW medium, C. beijerinckii NCIMB 8052 and strain BA101 produced 10.7 g L−1 and 14.5 g L−1 of butanol, respectively. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and strain BA101 were 14 g L−1 and 20 g L−1, respectively. Initial fermentation in small-scale flasks containing 6% maltodextrin-1.6% solids concentration CSW medium resulted in 6 g L−1 and 12.6 g L−1 of butanol production by C. beijerinckii NCIMB 8052 and strain BA101, respectively. CSW can serve as an economic source of nitrogen, vitamins, amino acids, minerals, and other nutrients. Thus, it is feasible to use 6% glucose-1.6% solids CSW medium in place of semi-defined P2 medium. Received 9 February 1998/ Accepted in revised form 1 September 1998  相似文献   

17.
There are remarkably few reports on d-arabitol production from lactose. Previous studies in our laboratory have shown that the osmophilic yeast Kluyveromyces lactis NBRC 1903 convert lactose to extracellular d-arabitol. The present study was undertaken to determine the participation of osmotic stress caused by lactose on d-arabitol production by K. lactis NBRC 1903 and to provide the information on the kinetics of d-arabitol production from lactose by K. lactis NBRC 1903. It was confirmed that d-arabitol production was triggered when an initial lactose concentration was above 278 mmol L−1. d-Arabitol yield increased with an increase in initial lactose concentration. The highest d-arabitol concentration of 79.5 mmol L−1 was achieved in the cultivation of K. lactis NBRC 1903 in a medium containing 555 mmol L−1 lactose and 40 g L−1 yeast extract. Lactose was found to play two important roles in d-arabitol production by K. lactis NBRC 1903 grown on lactose. First, lactose was assimilated as the substrate both for cell growth and d-arabitol production. Second, a high lactose concentration induced cellular response to high osmotic stress and up-regulated the flow from d-glucose-6-phosphate to d-arabitol. The arrest of cell growth triggered d-arabitol production.  相似文献   

18.
We have analysed the influence of the initial pH of the medium and the quantity of aeration provided during the batch fermentation of solutions of d-xylose by the yeast Hansenula polymorpha (34438 ATCC). The initial pH was altered between 3.5 and 6.5 whilst aeration varied between 0.0 and 0.3 vvm. The temperature was kept at 30 °C during all the experiments. Hansenula polymorpha is known to produce high quantities of xylitol and low quantities of ethanol. The most favourable conditions for the growth of xylitol turned out to be: an initial pH of between 4.5 and 5.5 and the aeration provided by the stirring vortex alone. Thus, at an initial pH of 5.5, the maximum specific production rate (μm) was 0.41 h−1, the overall biomass yield (Y x/s G) was 0.12 g g−1, the specific d-xylose-consumption rate (q s ) was 0.075 g g−1 h−1 (for t = 75 h), the specific xylitol-production rate (q Xy ) was 0.31 g g−1 h−1 (for t = 30 h) and the overall yields of ethanol (Y E/s G) and xylitol (Y Xy/s G) were 0.017 and 0.61 g g−1 respectively. Both q s and q Xy decreased during the course of the experiments once the exponential growth phase had finished. Received: 26 March 1998 / Received revision: 30 June 1998 / Accepted: 2 July 1998  相似文献   

19.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

20.
Candida peltata NRRL Y-6888 to ferment xylose to xylitol was evaluated under different fermentation conditions such as pH, temperature, aeration, substrate concentration and in the presence of glucose, arabinose, ethanol, methanol and organic acids. Maximum xylitol yield of 0.56 g g−1 xylose was obtained when the yeast was cultivated at pH 6.0, 28°C and 200 rpm on 50 g L−1 xylose. The yeast produced ethanol (0.41 g g−1 in 40 h) from glucose (50 g L−1) and arabitol (0.55 g g−1 in 87 h) from arabinose (50 g L−1). It preferentially utilized glucose > xylose > arabinose from mixed substrates. Glucose (10 g L−1), ethanol (7.5 g L−1) and acetate (5 g L−1) inhibited xylitol production by 61, 84 and 68%, respectively. Arabinose (10 g L−1) had no inhibitory effect on xylitol production. Received 24 December 1998/ Accepted in revised form 18 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号