首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang H  Dian W  Wu P 《Phytochemistry》2003,63(1):53-59
Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.  相似文献   

2.
The effects of temperature on starch and amylose accumulation, fine structure of amylopectin and activities of some enzymes related to starch synthesis in developing rice endosperms was examined. Two early indica rice varieties were used, differing in amylose concentration (AC, %), namely Jia 935 (low AC) and Jia 353 (high AC). The results showed that the effects of high temperature on AC and amylopectin fine structure were variety-dependent. High temperature caused a reduction in amylose concentration and an increase in the short chain (CL<22) proportion of amylopectin for Jia 935; while opposite was true for Jia 353. High temperature also reduced and increased the activity of granule-bound starch synthase (GBSS) in Jia 935 and in Jia 353, respectively. This suggests that a change in the ratio of amylose/starch due to temperature was attributable to a change in GBSS activity. Moreover, obvious differences between the two rice varieties were detected in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (ADPG-Ppase), soluble starch synthase (SSS), starch branching enzyme (SBE), starch de-branching enzyme (SDBE) and starch phosphorylase (SPase) to high temperature. Accumulation rate of amylose was significantly and positively correlated with GBSS for Jia 935, but not for Jia 353. Amylose accumulation was also significantly and positively correlated with the activities of SDBE, SBE, ADPG-Ppase and SuSy for both varieties. The results suggest that the ratio of amylose to starch in rice endosperm is not only related to GBSS, but also affected by the activities of SDBE, SBE, ADPG-Ppase and SuSy.  相似文献   

3.
Endosperm starch and pericarp starch were isolated from maize (B73) kernels at different developmental stages. Starch granules, with small size (2–4 μm diameter), were first observed in the endosperm on 5 days after pollination (DAP). The size of endosperm-starch granules remained similar until 12DAP, but the number increased extensively. A substantial increase in granule size was observed from 14DAP (diameter 4–7 μm) to 30DAP (diameter10–23 μm). The size of starch granules on 30DAP is similar to that of the mature and dried endosperm-starch granules harvested on 45DAP. The starch content of the endosperm was little before 12DAP (less than 2%) and increased rapidly from 10.7% on 14DAP to 88.9% on 30DAP. The amylose content of the endosperm starch increased from 9.2% on 14DAP to 24.2% on 30DAP and 24.4% on 45DAP (mature and dried). The average amylopectin branch chain-length of the endosperm amylopectin increased from DP23.6 on 10DAP to DP26.9 on14DAP and then decreased to DP25.4 on 30DAP and DP24.9 on 45DAP. The onset gelatinization temperature of the endosperm starch increased from 61.3 °C on 8DAP to 69.0 °C on 14DAP and then decreased to 62.8 °C on 45DAP. The results indicated that the structure of endosperm starch was not synthesized consistently through the maturation of kernel. The pericarp starch, however, showed similar granule size, starch content, amylose content, amylopectin structure and thermal properties at different developmental stages of the kernel.  相似文献   

4.
Normal (nonglutinous) rice plants (Oryza sativa andO. glaberrima) contain more than 18% amylose in endosperm starch, whilewaxy (glutinous) plants lack it in this starch. In contrast, leaf starch contained more than 3.6% amylose even inwaxy plants. SDS-PAGE analysis of proteins bound to endosperm starch granules in the normal plants revealed a single band with aMr of 60 kd, whereaswaxy plants did not exhibit a similar band. The activity of starch synthase (NDP-glucose-starch glucosyltransferase) was completely inhibited by antibody against the 60-kd protein. Thus, we conclude that the 60-kd protein is thewaxy protein encoded by theWx allele, which also plays a role in the synthesis of nonglutinous starch in endosperm tissue. In leaf blades, the proteins bound to starch granules separated into five bands withMr's of 53.6 to 64.9 kd on SDS-PAGE. Analysis of these proteins by immunoblotting using antiserum againstWx protein and inhibition of starch synthase activity by the synthase antibody revealed that none of these proteins was homologous toWx protein. We suggest that the synthesis of amylose in leaf blades is brought about by a protein encoded by a gene(s) different from theWx gene expressed in the endosperm.  相似文献   

5.
Gelatinization mechanism of potato starch   总被引:5,自引:0,他引:5  
The non-Newtonian behavior and dynamic viscoelasticity of potato starch (Jaga kids red ’90, 21.0% amylose content) solutions after storage at 25 and 4°C for 24 h were measured with a rheogoniometer. The flow curves, at 25°C, of potato starch showed plastic behavior >1.0% (w/v) after heating at 100°C for 30 min. A gelatinization of potato starch occurred above 1.0% at room temperature. A very large dynamic viscoelasticity was observed when potato starch solution (3.0%) was stored at 4°C for 24 h and stayed at a constant value with increasing temperature. A small dynamic modulus of potato starch was observed upon addition of urea (4.0 M) at low temperature (0°C) even after storage at 25 and 4°C for 24 h. A small dynamic modulus was also observed in 0.05 M NaOH solution. Possible models of gelatinization and retrogradation mechanism of potato starch were proposed.  相似文献   

6.
颗粒淀粉合成酶(GBSS)和淀粉分支酶3(SBE3)是淀粉合成过程中的两个关键酶,这两个酶主要由耽和SBE3两个基因分别控制,它们的表达量直接影响直链淀粉和支链淀粉的含量比例。为了探讨水稻淀粉关键酶基因耽过量与SBE3干涉复合表达对直链淀粉含量的影响,构建了Wx过量表达与SBE3干涉结合的多基因表达载体,并通过农杆菌介导的方法将其导入日本晴水稻中。经过PCR检测分析获得了65株转基因阳性植株,半定量RT—PCR检测表明转基因株系中Wx基因表达量明显增加,而SBE3基因表达量显著减少。转基因株系籽粒透明度明显降低,直链淀粉含量比野生型的平均高45%,但是千粒重变化不大,与野生型相当。遗传分析表明这些转基因株系多数可稳定遗传。  相似文献   

7.
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.  相似文献   

8.
The percentage of amylose in the endosperm of rice (Oryza sativa) largely determines grain cooking and eating qualities. Granule‐bound starch synthase I (GBSSI) and GBSSII are responsible for amylose biosynthesis in the endosperm and leaf, respectively. Here, we identified OsGBP, a rice GBSS‐binding protein that interacted with GBSSI and GBSSII in vitro and in vivo. The total starch and amylose contents in osgbp mutants were significantly lower than those of wild type in leaves and grains, resulting in reduced grain weight and quality. The carbohydrate‐binding module 48 (CBM48) domain present in the C‐terminus of OsGBP is crucial for OsGBP binding to starch. In the osgbp mutant, the extent of GBSSI and GBSSII binding to starch in the leaf and endosperm was significantly lower than wild type. Our data suggest that OsGBP plays an important role in leaf and endosperm starch biosynthesis by mediating the binding of GBSS proteins to developing starch granules. This elucidation of the function of OsGBP enhances our understanding of the molecular basis of starch biosynthesis in rice and contributes information that can be potentially used for the genetic improvement of yield and grain quality.  相似文献   

9.
10.
The developmental changes in the structure and properties of endosperm starches were investigated using the near-isogenic lines for wx alleles of rice. The amylose content in nonwaxy starch was increased during the development of rice grains. Because the accumulation of amylose in endosperm stopped earlier than that of amylopectin during development, the percentages of amylose reached a maximum at the 17th day after flowering in nonwaxy endosperm. Since the distributions of the unit-chain length of amylopectin in waxy and nonwaxy starches were unchanged with the development of the grains, these amylopectins would be synthesized in a similar manner through development. The structure and properties of endosperm starches were reconfirmed to be conspicuously affected by the temperature at the early developmental stages of the grain-filling period, namely, they appeared to be characterized by the temperature at which the starch was accumulated in the endosperm.  相似文献   

11.
12.
The waxy gene, which encodes the granule bound starch synthase enzyme, is one of the key genes influencing starch synthesis in the rice endosperm. To investigate functional differences between GBSS alleles, we cloned and sequenced GBSS cDNA from a series of cultivars that differed substantially in apparent amylose content and starch viscosity characteristics. We found two single nucleotide polymorphisms in exons 6 and 10 that resulted in amino acid substitutions. These substitutions are associated with differences in apparent amylose content and viscosity characteristics. Subsequent sequencing of these regions from additional cultivars confirmed their association with particular rice quality characteristics. These point mutations could prove useful as molecular markers in the production of cultivars with superior eating, cooking and processing quality, and contribute to our understanding of the various structural and functional differences among granule bound starch synthase alleles.  相似文献   

13.
The Waxy (Wx) gene encodes a granule-bound starch synthase (GBSS) that plays a key role in the amylose synthesis of rice and other plant species. Two functional Wx alleles of rice exist: Wx(a), which produces a large amount of amylose, and Wx(b), which produces a smaller amount of amylose because of the mutation at the 5' splice site of intron 1. Wx(b) is largely distributed in Japonica cultivars, and high amylose cultivars do not exist in Japonica cultivars. We introduced the cloned Wx(a) cDNA into null-mutant Japonica rice (wx). The amylose contents of these transgenic plants were 6-11% higher than that of the original cultivar, Labelle, which carries the Wx(a) allele, although the levels of the Wx protein in the transgenic rice were equal to those of cv. Labelle. We also observed a gene-dosage effect of the Wx(a) transgene on Wx protein expression, but a smaller dosage effect was observed in amylose production with over 40% of amylose content in transgenic rice. Moreover, one transgenic line carrying eleven copies of the transgene showed low levels of Wx expression and amylose in the endosperm. This suggested that the integration of excessive copies of the transgene might lead to gene silencing.  相似文献   

14.
Suspension cultures of rice (Oryza sativa L.), initiated from seed, produced significant amounts of starch. Starch accumulated in the cultured cells throughout the growth phase and reached a maximum of 7% of the cell dry weight at stationary phase. Starch was present in compound granules which were birefringent under polarized light. Suspension culture starch had a higher amylose content and a lower gelatinization temperature than rice grain starch. Additionally, starch branching enzyme, an enzyme involved in starch biosynthesis, was characterized by anion exchange chromatography in culture cells and endosperm. Culture cells had at least one major form of starch branching enzyme which differed from the multiple enzyme forms present in endosperm.  相似文献   

15.
Apical florets of maize (Zea mays L.) ears differentiate later than basal florets and form kernels which have lower dry matter accumulation rates. The purpose of this study was to determine whether increasing the temperature of apical kernels during the dry matter accumulation period would alter the difference in growth rate between apical and basal kernels. Apical regions of field-grown maize (cultivar Cornell 175) ears were heated to 25 ± 3°C from 7 days after pollination to maturity (tip-heated ears) and compared with unheated ears (control). In controls, apical-kernel endosperm had 24% smaller dry weight at maturity, lower concentration of sucrose, and lower activity of ADP-Glc starch synthase than basal-kernel endosperm, whereas ADP-Glc-pyrophosphorylase (ADPG-PPase) activities were similar. In tip-heated ears apical-kernel endosperm had the same growth rate and final weight as basal-kernel endosperm and apical kernels had higher sucrose concentrations, higher ADP-Glc starch synthase activity, and similar ADPG-PPase activity. Total grain weight per ear was not increased by tip-heating because the increase in size of apical kernels was partially offset by a slight decrease in size of the basal- and middle-position kernels. Tip-heating hastened some of the developmental events in apical kernels. ADPG-PPase and ADP-Glc starch synthase activities reached peak levels and starch concentration began rising earlier in apical kernels. However, tip-heating did not shorten the period of starch accumulation in apical kernels. The results indicate that the lower growth rate and smaller size of apical kernels are not solely determined by differences in prepollination floret development.  相似文献   

16.
Amylose content and starch granule size in grains influence rice quality, which differs between the early (ES) and late season (LS). The objective of this study was to determine the variation of amylose content and starch granule size between seasons and find the main reasons (e.g., temperature and solar radiation) for the observed variation. Field experiments with six rice varieties (three high and three low amylose content rice) planted in the ES and LS were conducted in 2016 and 2017, respectively. The mean temperatures during the filling stage were higher in ES, however, the daily temperatures at 7-10 days after flowering (DAF) in 2016, and at 5-10, 13-14 DAF in 2017 were higher in LS. The results showed that amylose content in LS was lower than in ES with high amylose content rice varieties (HACV); the opposite trend occurred with low amylose content rice varieties (LACV). The mean starch granule diameter was higher in LS than ES in 2016, but the opposite result occurred in 2017 with all rice. Our results suggest that higher temperatures increased and decreased the amylose content in HACV and LACV, respectively. Temperatures at 5-15 DAF were important for the formation of starch granules: lower temperatures during 10-14 DAF increased the proportion of larger starch granules (d>6.21 μm, some with d>13.3 μm), and higher temperatures at 5-6 DAF increased the proportion of starch granules with diameter 4.24-6.21 μm.  相似文献   

17.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

18.
19.
The rice Waxy (Wx) gene encodes granule‐bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site‐directed mutated Wx gene constructs into the wx mutant glutinous rice. The eight amino acid residues are suspected to play roles in OsGBSS1 structure maintenance or function based on homologous enzyme sequence alignment and homology modelling. Both OsGBSS1 activity and amylose content were analysed in homozygous transgenic lines carrying the mutated OsGBSS1 (Wx) genes. Our results indicate that mutations at diverse sites in OsGBSS1 reduces its activity by affecting its starch‐binding capacity, its ADP‐glucose‐binding capability or its protein stability. Our results shed new light on the structural basis of OsGBSS1 activity and the mechanisms of OsGBSS1 activity on amylose synthesis in vivo. This study also demonstrates that it is feasible to finely modulate amylose content in rice grains by modifying the OsGBSS1 activity.  相似文献   

20.
Sun MM  Abdula SE  Lee HJ  Cho YC  Han LZ  Koh HJ  Cho YG 《PloS one》2011,6(4):e18385
The composition of amylopectin is the determinant of rice eating quality under certain threshold of protein content and the ratio of amylose and amylopectin. In molecular biology level, the fine structure of amylopectin is determined by relative activities of starch branching enzyme (SBE), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS) in rice grain under the same ADP-Glucose level. But the underlying mechanism of eating quality in molecular biology level remains unclear. This paper reports the differences on major parameters such as SNP and insertion-deletion sites, RNA expressions, and enzyme activities associated with eating quality of japonica varieties. Eight japonica rice varieties with significant differences in various eating quality parameters such as palatability and protein content were used in this experiment. Association analysis between nucleotide polymorphism and eating quality showed that S12 and S13 loci in SBE1, S55 in SSS1, S58 in SSS2A were significantly associated with apparent amylose content, alkali digestion value, setback viscosity, consistency viscosity, pasting temperature, which explained most of the variation in apparent amylose content, setback viscosity, and consistency viscosity; and explained almost all variations in alkali digestion value and pasting temperature. Thirty-five SNPs and insertion-deletions from SBE1, SBE3, GBSS1, SSS1, and SSS2A differentiated high or intermediate palatability rice varieties from low palatability rice varieties. Correlation analysis between enzyme activities and eating quality properties revealed that SBE25 and SSS15/W15 were positively correlated with palatability, whereas GBSS10 and GBSS15 were negatively correlated. Gene expressions showed that SBE1 and SBE3 expressions in high palatability varieties tended to be higher than middle and low palatability varieties. Collectively, SBE1, SBE3, SSS1, and SSS2A, especially SBE1 and SBE3 could improve eating quality, but GBSS1 decreased eating quality. The results indicated the possibility of developing high palatability cultivars through modification of key genes related to japonica rice eating quality formation in starch biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号