首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptomyces hydrogenans converts 17beta-hydroxyandrost-4-ene-3-one (testosterone) to androst-4-ene-3,17-dione (androstenedione) in good yields. Time-dependence of the conversion, steroid uptake and release have been studied in vivo. Steroid analysis was done by thin-layer chromatography and recrystallization to constant specific radioactivity. After sonification of the cells the postulated 17beta-hydroxysteroid dehydrogenase activity was recovered in the 105 000 g supernatant. The enzyme was enriched by gel filtration on Sephadex G-200. It required NAD+ as cofactor. Its activity could be studied photometrically, because there are no further testosterone-netabolites. If S. hydrogenans was cultured in the presence of testosterone, estradiol or 5alphaH-dihydrotestosterone, the activity of 17beta-hydroxysteroid dehydrogenase increased.  相似文献   

2.
3 alpha, 20 beta-Hydroxysteroid dehydrogenase, an NADH-dependent oxidoreductase isolated from Streptomyces hydrogenans , is a tetramer containing four subunits each of Mr 25,000. The enzyme has been crystallized by the vapor diffusion technique using either phosphate or borate buffered ammonium sulfate (pH between 6.0 and 8.7) as the precipitant. The crystals are hexagonal bipyramids ; they have the symmetry of space group P6(4)22 (or P6(2)22), with unit cell dimensions a = 127.3 A, c = 112.2 A. Volume and density considerations imply that the crystallographic asymmetric unit contains two monomers, and therefore that the tetramer possesses a 2-fold axis of symmetry that is coincident with a crystallographic 2-fold symmetry element.  相似文献   

3.
4.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

5.
Abstract A procedure is described for the production of monoclonal antibodies (mAbs) against 3α,20β-hydroxysteroid dehydrogenase (3α,20β-HSD) from the actinomycete Streptomyces hydrogenans ATCC 19631. Clones which were obtained after fusion of immune cells were screened by solid-phase ELISA and immunoblotting. About 5.2% of the clones secreted immunoglobulins with specificity for 3α,20β-HSD. The purified mAbs were found to belong to subclass IgG1 and to recognize both the native enzyme as well as its identical subunits which were obtained by SDS denaturation. However, the activity of the tetrameric holoenzyme was only weakly diminished in the presence of these mAbs.  相似文献   

6.
Replacement of the 21-methyl group of 20 beta-hydroxypregn-4-en-3-one with an ethoxyacetylene group yields a compound that is an excellent substrate (pH 7.4, Km = 2.3 microM, Vmax = 4.6 nmol min-1 micrograms-1) for the Streptomyces hydrogenans NAD(H)-dependent 20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53). The enzyme-generated ethoxyacetylenic ketone product is a potent inactivator of the enzyme. Gel filtration chromatography of enzyme inactivated with radiolabeled steroid demonstrates that covalent modification of the enzyme has occurred. Both NAD and NADH retard the rate of inactivation, suggesting that only free enzyme is susceptible to covalent modification. Consequently, enzymatically formed ethoxyacetylenic ketone does not react with the enzyme while it is part of the ternary complex. Moreover, the kinetically preferred release of this reactive ketone prior to NADH release assures that enzyme inactivation occurs only when released ketone subsequently encounters free enzyme. Kinetic analysis of inactivations carried out with chemically prepared ethoxyacetylenic ketone and enzyme at pH 7.4 and 9.2 yields bimolecular rate constants for the inactivation process of 1.15 X 10(4) L mol-1 s-1 and 6.94 X 10(4) L mol-1 s-1, respectively. This bimolecular reaction is faster than the bimolecular reaction of the ethoxyacetylenic ketone with either glutathione, mercaptoethanol, or dithiothreitol. Thus, complete inactivation by ketone generated from 5 microM alcohol and 5 microM NAD occurs in 30 min at pH 7.4 in the presence of 1 mM glutathione.  相似文献   

7.
To investigate the regulatory mechanism of 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) (EC 1.1.1.149) activity in ovarian tissue, the enzyme was purified from ovaries of normal mature female rats. Column chromatography of the cytosolic fraction from ovaries on DEAE-Toyopearl 650M revealed two peaks of the 20 alpha-HSD activity at different ionic strengths. These peaks were designated HSD1 and HSD2, respectively. Each of the active fractions was further purified to homogeneity by dye-affinity chromatography using Matrex Green A and AF Red-Toyopearl. Both the fractions appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (at Mr = 33,000 under reducing conditions). Under non-reducing conditions, similar values were obtained on gel-exclusion HPLC, indicating that the enzyme fractions were single-stranded, monomeric polypeptides. Homogeneous HSD1 and HSD2 were purified 361-fold and 509-fold, respectively, and differed in their substrate preference. The two enzyme fractions had Km values of 4.75 microM and 5.16 microM for 20 alpha-dihydroprogesterone, respectively, and showed almost the same RF values on reverse-phase HPLC and free-zone capillary electrophoresis. However, amino acid composition was slightly different, i.e. lysin content was higher in HSD1 than HSD2. Thus, it was clarified that two types of 20 alpha-HSD with very similar molecular structures are present in the rat ovary.  相似文献   

8.
Streptomyces hydrogenans 3 alpha,20 beta-hydroxysteroid dehydrogenase reduces the C20 ketone on glucocorticoids and progestins. We find that two licorice-derived compounds, glycyrrhizic acid and carbenoxolone, inhibit this enzyme with microM Kis. Inhibition is competitive, indicating that these compounds are binding at or close to the catalytic site. Carbenoxolone's high aqueous solubility and affinity for 3 alpha,20 beta-hydroxysteroid dehydrogenase enabled us to prepare crystals of a carbenoxolone-NADH-enzyme ternary complex, which preliminary X-ray analysis indicates has a crystal structure that is significantly different from that of the 3 alpha,20 beta-hydroxysteroid dehydrogenase-NADH complex. A comparison of the tertiary structures of these two complexes should prove useful in understanding this enzyme's catalytic mechanism, as well as those of two homologous enzymes, mammalian 11 beta-hydroxysteroid dehydrogenase and 15-hydroxyprostaglandin dehydrogenase that also are inhibited by carbenoxolone.  相似文献   

9.
20alpha-hydroxysteroid dehydrogenase: a T lymphocyte-associated enzyme.   总被引:6,自引:0,他引:6  
20alpha-Hydroxysteroid dehydrogenase (20alpha-SDH), an enzyme which reduces progesterone to 20alpha-dihydroprogesterone, was found to be associated with T lymphocytes. 20alphaSDH activity was present in spleen cells bearing theta antigen, spleen cells nonadherent to nylon wool (T lymphocyte-enriched population), and in thymocytes. Almost no enzymatic activity was found in bone marrow cells from normal mice and in spleen cells from neonatally thymectomized or athymic nude mice. T cell mitogens (PHA and Con A), but not the B cell mitogen LPS, induced high levels of enzymatic activity 48 hr after addition to spleen cell cultures. The level of 20alphaSDH activity in lymphocytes was age dependent. At the age of 4 weeks 20alphaSDH activity in thymocytes, spleen cells, and lymph node lymphocytes was 3 to 5 times higher than at 8 and 16 weeks. Progesterone (5.0 X 10(-7) M) was found to inhibit thymocyte proliferation after exposure to mitogens, but not 20alpha-dihydroprogesterone (10(-6) M). 20alpha SDH may protect the embryonic thymocytes against high concentrations of progesterone.  相似文献   

10.
Abstract Wild-type cells of Streptomyces hydrogenans ATCC 19631, strain HY A1, show a remarkable degree of genetic instability with regard to the biosynthesis of 17β-hydroxysteroid dehydrogenase. As plasmids might be responsible for this phenomenon we tried to detect plasmids in lysates of this microorganism. Streptomyces lividans , strain TK64 (pIJ916), was used as reference strain, containing a 19-kb plasmid with low abundancy. Whereas plasmid DNA could be shown in lysates of S. lividans TK64, no plasmid DNA was detectable in lysates of S. hydrogenans .  相似文献   

11.
Homogeneous indanol dehydrogenase from monkey liver catalyzed the reversible conversion of 3 alpha- or 20 alpha-hydroxy groups of several bile acids and 5 beta-pregnanes to the corresponding 3- or 20-ketosteroids. The kcat values for the steroids determined at pH 7.4 were low, but the kcat/Km values for the 3-ketosteroids were comparable to or exceeded those for 1-indanol and xenobiotic carbonyl substrates. The enzyme transferred the 4-pro-R-hydrogen atom of NADPH to the 3 beta- or 20 beta-face of the ketosteroid substrate. Competitive inhibition of the hydroxysteroid dehydrogenase activity of the enzyme by medroxyprogesterone acetate, hexestrol, and 1,10-phenanthroline suggests that both 1-indanol and hydroxysteroid are oxidized at the same active site on the enzyme. The specific inhibitor of the enzyme, 1,10-phenanthroline, suppressed the 3 alpha-hydroxysteroid dehydrogenase activity in the crude extract of monkey liver by 50%. The results strongly suggest that indanol dehydrogenase acts as a 3(20)alpha-hydroxysteroid dehydrogenase in the metabolism of certain steroid hormones and bile acids.  相似文献   

12.
13.
The conversion of progesterone to 20α-hydroxy-4-pregnen-3-one by 20α-hydroxysteroid dehydrogenase was measured in mouse vaginal tissue. The enzyme was confined to the 105,000 × g supernatant of tissue homogenates and the requirement for reduced NADP demonstrated. The Initial rates of 20α-hydroxysteroid dehydrogenase were determined in the cytosol of tissues from four-day estrogen-treated and untreated animals. The rate of 20α-hydroxy-4-pregnen-3-one formation per vagina was increased 15-fold by estrogen stimulation. This increase could not be accounted for on the basis of increased organ weight or increased availability of cofactor. These findings indicate that 20α-hydroxy steroid dehydrogenase induction in the mouse vaginae is under estrogen control.  相似文献   

14.
The stereospecificity of hydrogen transfer between steroid (17-hydroxyprogesterone) and both natural cofactors by bovine testicular 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) has been determined. Cofactors used in these studies, [4-pro-S-3H]NADH ([4B-3H]NADH) and [4-pro-S-3H]NADPH ([4B-3H]NADPH) were generated with human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) utilizing [17 alpha-3H]estradiol-17 beta and NAD+ or NADP+, respectively. The resulting [4B-3H]NADH and [4B-3H]NADPH were purified by ion-exchange chromatography and separately incubated with molar excess of 17-hydroxyprogesterone as substrate in the presence of 20 alpha-HSD. Following incubation, steroid reactant and product were extracted, separated by HPLC and quantitated as to mass and content of tritium. The oxidized and reduced cofactors were separated by ion-exchange chromatography and quantitated as to mass and tritium content. In all incubations, equimolar amounts of 17,20 alpha-dihydroxy-4-pregnen-3-one and oxidized cofactor were obtained. Further, all recovered radioactivity remained with cofactor and none was found in the steroid product. In additional experiments, both reduced cofactors were separately incubated with glutamate dehydrogenase, an enzyme known to transfer from the B-side of the nicotinamide ring. Here radioactivity was present only in the unreacted cofactor fractions and in the product, glutamic acid. The results indicate that bovine testicular 20 alpha-HSD catalyzes transfer of the 4A-hydrogen from the dihydronicotinamide moiety of the reduced cofactor. Finally, this work described modifications that represent considerable improvement in the purification and assay of bovine 20 alpha-HSD as originally described.  相似文献   

15.
16.
Rat ovarian 20 alpha-hydroxysteroid dehydrogenase plays a pivotal role in leuteolysis and parturition by catalysing the reduction of progesterone to give the progestationally inactive steroid 20 alpha-hydroxyprogesterone. Putative mechanism based inhibitors of this enzyme were synthesized as potential progestational maintaining agents, including the epimeric allylic alcohol pair 3 beta-hydroxy-alpha-vinyl-5 alpha-androstane-17 beta-methanol and the related vinyl ketone 1-(3 beta-hydroxy-5 alpha-androstan-17 beta-yl)-2-propen-1-one. The vinyl ketone inactivates rat ovarian 20 alpha-hydroxysteroid dehydrogenase, semi-purified by poly(L-lysine)-agarose column chromatography, in a rapid time-dependent manner. Analysis of the pseudo-first-order inactivation plots gave a Ki of 2.0 microM for the inhibitor and a t1/2 for the enzyme of 20 s at saturation. These data indicate that the vinyl ketone is a potent and efficient inactivator of the ovarian dehydrogenase. Neither dialysis in the presence or absence of a competing nucleophile nor gel filtration reserves the inactivation, suggesting that a stable covalent bond is formed between the enzyme and steroid ligand. Both substrates (20 alpha-hydroxyprogesterone and NADP+) protect the enzyme from inactivation; moreover, initial velocity measurements in the presence of saturating concentrations of both substrates indicate that the vinyl ketone can behave as a competitive inhibitor, yielding a Ki value identical with that obtained in the inactivation experiments. Our results imply that the vinyl ketone is an active-site directed alkylating agent. By contrast the allylic alcohol pair 3 beta-hydroxy-alpha-vinyl-5 alpha-androstane-17 beta-methanol are neither substrates nor inhibitors of the ovarian enzyme and appear to be excluded from the catalytic site. The rapid inactivation observed with the vinyl ketone suggests that this compound may be useful as a progestational maintaining agent.  相似文献   

17.
18.
19.
Placental 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activity was studied in order to evaluate the mechanism of continuation of pregnancy and initiation of labor. The placentas obtained at various gestational weeks were homogenized and fractionated into "nuclear", "mitochondrial", "microsomal" and "supernatant" fractions. Each fraction was incubated with 14C-progesterone and a hydrogen donor. Enzymatic activity was measured by the conversion of progesterone to 20 alpha-dihydroprogesterone. The highest activity of 20 alpha-HSD for progesterone was found to be localized in "microsomal" fraction. The Km constant of 20 alpha-HSD was 4.5 X 10(-6)M for progesterone in "microsomal" fraction. It was found that placental microsomal 20 alpha-HSD required NADPH as well as NADH. 20 alpha-HSD activity for progesterone increased as gestational weeks advanced. The addition of DHA-sulfate and DHA inhibited 20 alpha-HSD activity for progesterone significantly, suggesting that the steroid produced by the feto-placental unit may be involved in the metabolism of progesterone in human placenta.  相似文献   

20.
Multiple transport systems for L-aspartic acid exist in Steptomyces hydrogenans. The intracellular accumulation of L-aspartate against a concentration gradient was immediately inhibited by proton conductors, such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2,4-dinitrophenol or nigericin. Transport activity was gradually lost when inhibitors of protein synthesis were added. L-Aspartate transport had two pH optima at 6.5 and 4.5. At pH 6.5, two saturable transport components with different Km and Vmax values could be resolved by kinetic studies. A high-affinity system (system I) preferred the L-isomers of the anionic forms of aspartic and glutamic acid. At the same pH, a second, low-affinity system (system II) operated, which was presumably less specific than system I and also able to accept, at high concentrations, neutral amino acids. At pH 4.5, the Lineweaver-Burk plot revealed only a single catalytic component, with Km and Vmax values similar to those of system II. Again, in contrast to system I, this component showed high affinity for neutral amino acids. The data suggest that L-aspartic acid and L-glutamic acid are transported by this system as neutral zwitterionic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号