首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The heterogeneous nuclear ribonucleoprotein C1 and C2 proteins were preferentially cross-linked by treatment with UV light in nuclear extracts to RNAs containing six different polyadenylation signals. The domain required for the interaction was located downstream of the poly(A) cleavage site, since deletion of this segment from several polyadenylation substrate RNAs greatly reduced cross-linking efficiency. In addition, RNAs containing only downstream sequences were efficiently cross-linked to C proteins, while fully processed, polyadenylated RNAs were not. Analysis of mutated variants of the simian virus 40 late polyadenylation signal showed that uridylate-rich sequences located in the region between 30 and 55 nucleotides downstream of the cleavage site were required for efficient cross-linking of C proteins. This downstream domain of the simian virus 40 late poly(A) addition signal has been shown to influence the efficiency of the polyadenylation reaction. However, there was not a strict correlation between cross-linking of C proteins and the efficiency of polyadenylation.  相似文献   

3.
4.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes, the structures that contain heterogeneous nuclear RNA and its associated proteins, constitute one of the most abundant components of the eukaryotic nucleus. hnRNPs appear to play important roles in the processing, and possibly also in the transport, of mRNA. hnRNP C proteins (C1, M(r) of 41,000; C2, M(r) of 43,000 [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis]) are among the most abundant pre-mRNA-binding proteins, and they bind tenaciously to sequences relevant to pre-mRNA processing, including the polypyrimidine stretch of introns (when it is uridine rich). C proteins are found in the nucleus during the interphase, but during mitosis they disperse throughout the cell. They have been shown previously to be phosphorylated in vivo, and they can be phosphorylated in vitro by a casein kinase type II. We have identified and partially purified at least two additional C protein kinases. One of these, termed Cs kinase, caused a distinct mobility shift of C proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These phosphorylated C proteins, the Cs proteins, were the prevalent forms of C proteins during mitosis, and Cs kinase activity was also increased in extracts prepared from mitotic cells. Thus, hnRNP C proteins undergo cell cycle-dependent phosphorylation by a cell cycle-regulated protein kinase. Cs kinase activity appears to be distinct from the well-characterized mitosis-specific histone H1 kinase activity. Several additional hnRNP proteins are also phosphorylated during mitosis and are thus also potential substrates for Cs kinase. These novel phosphorylations may be important in regulating the assembly and disassembly of hnRNP complexes and in the function or cellular localization of RNA-binding proteins.  相似文献   

5.
The binding of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins C, A, and 70K to U1 small nuclear RNA (snRNA) was analyzed. Assembly of U1 snRNAs from bean and soybean and a set of mutant Xenopus U1 snRNAs into U1 snRNPs in Xenopus egg extracts was studied. The ability to bind proteins was analyzed by immunoprecipitation with monospecific antibodies and by a protein-sequestering assay. The only sequence essential for binding of the U1-specific proteins was the conserved loop sequence in the 5' hairpin of U1. Further analysis suggested that protein C binds directly to the loop and that the assembly of proteins A and 70K into the RNP requires mainly protein-protein interactions. Protein C apparently recognizes a specific RNA sequence rather than a secondary structural element in the RNA.  相似文献   

6.
We had previously demonstrated that a cellular protein specifically interacts with the 3' end of poliovirus negative-strand RNA. We now report the identity of this protein as heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Formation of an RNP complex with poliovirus RNA was severely impaired by substitution of a lysine, highly conserved among vertebrates, with glutamine in the RNA recognition motif (RRM) of recombinant hnRNP C1, suggesting that the binding is mediated by the RRM in the protein. We have also shown that in a glutathione S-transferase (GST) pull-down assay, GST/hnRNP C1 binds to poliovirus polypeptide 3CD, a precursor to the viral RNA-dependent RNA polymerase, 3D(pol), as well as to P2 and P3, precursors to the nonstructural proteins. Truncation of the auxiliary domain in hnRNP C1 (C1DeltaC) diminished these protein-protein interactions. When GST/hnRNP C1DeltaC was added to in vitro replication reactions, a significant reduction in RNA synthesis was observed in contrast to reactions supplemented with wild-type fusion protein. Indirect functional depletion of hnRNP C from in vitro replication reactions, using poliovirus negative-strand cloverleaf RNA, led to a decrease in RNA synthesis. The addition of GST/hnRNP C1 to the reactions rescued RNA synthesis to near mock-depleted levels. Furthermore, we demonstrated that poliovirus positive-strand and negative-strand RNA present in cytoplasmic extracts prepared from infected HeLa cells coimmunoprecipitated with hnRNP C1/C2. Our findings suggest that hnRNP C1 has a role in positive-strand RNA synthesis in poliovirus-infected cells, possibly at the level of initiation.  相似文献   

7.
8.
hnRNP are made of two classes of unit, monoparticles and heterogeneous complexes. The monoparticles are much more easily dissociated by salt than the heterogeneous complexes. We made use of this differential salt sensitivity to determine the localization of snRNA in hnRNP.
  • 1.1, About 50% of the snRNA were released by NaCl under the conditions of dissociation of monoparticles. U1 RNA which was enriched in monoparticles was preferentially released.
  • 2.2, When the proteins resistant to salt dissociation were digested with proteinase K, an additional small proportion of snRNA was released, in particular a species designated as 5 Sa RNA. Therefore, 5 Sa RNA seems to be preferentially associated with the proteins of heterogeneous complexes.
  • 3.3, 40% of the snRNA remained associated with the hnRNA in the absence of any detectable protein. U1 and U2 RNA were the major RNAs in this fraction. The same RNA pattern was obtained for phenol-extracted RNA.
The results indicate that all snRNA species are associated with the proteins of monoparticles, with those of heterogeneous complexes and with hnRNA. The existence of these pools of snRNA may reflect different functional states.  相似文献   

9.
10.
The C heterogeneous ribonucleoprotein particle (hnRNP) protein bind to nascent pre-mRNA and may participate in assembly of the early prespliceosome. Ser/Thr phosphorylation of the C1 hnRNP protein in HeLa nuclear extracts regulates its binding to pre-mRNA (S. H. Mayrand, P. Dwen, and T. Pederson, Proc. Natl. Acad. Sci. USA 90:7764-7768, 1993). We have now further investigated the phosphorylation cycle of the C1 hnRNP protein, with emphasis on its regulation. Pretreatment of nuclear extracts with micrococcal nuclease eliminated the phosphorylation of C1 hnRNP protein, but pretreatment with DNase did not, suggesting a dependence on RNA. Oligodeoxynucleotide-targeted RNase H cleavage of U1, U2, and U4 small nuclear RNAs did not affect the phosphorylation of C1 hnRNP protein. However, cleavage of nucleotides 78 to 95, but not other regions, of U6 small nuclear RNA resulted in an inhibition of the dephosphorylation step of the C1 hnRNP protein phosphorylation cycle. This inhibition was as pronounced as that seen with the serine/threonine protein phosphatase inhibitor okadaic acid. C1 hnRNP protein dephosphorylation could be completely restored by the addition of intact U6 RNA. Add-back experiments with mutant RNAs further delineated the minimal region essential for C1 protein dephosphorylation as residing in nucleotides 85 to 92 of U6 RNA. These results illuminate a hitherto unanticipated function of U6 RNA: the modulation of a phosphorylation-dephosphorylation cycle of C1 hnRNP protein that influences the binding affinity of this protein for pre-mRNA. This newly revealed function of U6 RNA is likely to play a very early role in the prespliceosome assembly pathway, prior to U6 RNA's entry into the mature spliceosome's active center.  相似文献   

11.
12.
The C proteins (C1 and C2) are major constituents of the 40S subparticle of heterogeneous nuclear ribonucleoprotein complexes (hnRNPs) (Beyer, A.L., M.E. Christensen, B.W. Walker, and W.M. LeStourgeon, 1977, Cell, 11:127-138) and are two of the most prominent proteins that become cross-linked by ultraviolet light to heterogeneous nuclear RNA (hnRNA) in vivo. Studies are described here on the characterization of the C proteins in vertebrate cells using monoclonal and polyclonal antibodies. Monoclonal antibodies to genuine RNP proteins, including the C proteins, were obtained by immunizing mice with purified complexes of poly(A)+ hnRNA and poly(A)+ mRNA with their contacting proteins in vivo obtained by ultraviolet cross-linking the complexes in intact cells (Dreyfuss, G., Y.D. Choi, and S.A. Adam, 1984, Mol. Cell. Biol., 4:1104-1114). One of the monoclonal antibodies identified the C proteins in widely divergent species ranging from human to lizard. In all species examined, there were two C proteins in the molecular weight range of from 39,000 to 42,000 for C1, and from 40,000 to 45,000 for C2. The two C proteins were found to be highly related to each other; they were recognized by the same monoclonal antibodies and antibodies raised against purified C1 reacted also with C2. In avian, rodent, and human cells the C proteins were phosphorylated and were in contact with hnRNA in vivo. Immunofluorescence microscopy demonstrated that the C proteins are segregated to the nucleus. Within the nucleus the C proteins were not found in nucleoli and were not associated with chromatin as seen in cells in prophase. These findings demonstrate that C proteins with similar characteristics to those in humans are ubiquitous components of hnRNPs in vertebrates.  相似文献   

13.
14.
The processing of heterogeneous nuclear RNA into messenger RNA takes place in special nuclear ribonucleoprotein particles known as hnRNP. We report here the identification of proteins tightly complexed with poly(A)+ hnRNA in intact HeLa cells, as revealed by a novel in situ RNA- protein cross-linking technique. The set of cross-linked proteins includes the A, B, and C "core" hnRNP proteins, as well as the greater than 42,000 mol wt species previously identified in noncross-linked hnRNP. These proteins are shown to be cross-linked by virtue of remaining bound to the poly(A)+ hnRNA in the presence of 0.5% sodium dodecyl sulfate, 0.5 M NaCl, and 60% formamide, during subsequent oligo(dT)-cellulose chromatography, and in isopycnic banding in Cs2SO4 density gradients. These results establish that poly(A)+ hnRNA is in direct contact with a moderately complex set of nuclear proteins in vivo. This not only eliminates earlier models of hnRNP structure that were based upon the concept of a single protein component but also suggests that these proteins actively participate in modulating hnRNA structure and processing in the cell.  相似文献   

15.
Several proteins of heterogeneous nuclear ribonucleoprotein (hnRNP) particles display very high binding affinities for different ribonucleotide homopolymers. The specificity of some of these proteins at high salt concentrations and in the presence of heparin allows for their rapid one-step purification from HeLa nucleoplasm. We show that the hnRNP C proteins are poly(U)-binding proteins and compare their specificity to that of the previously described cytoplasmic poly(A)-binding protein. These findings provide a useful tool for the classification and purification of hnRNP proteins from various tissues and organisms and indicate that different hnRNP proteins have different RNA-binding specificities.  相似文献   

16.
17.
At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号