首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitrogen (N) capture by arbuscular mycorrhizal (AM) fungi from organic material is a recently discovered phenomenon. This study investigated the ability of two Glomus species to transfer N from organic material to host plants and examined whether the ability to capture N is related to fungal hyphal growth. Experimental microcosms had two compartments; these contained either a single plant of Plantago lanceolata inoculated with Glomus hoi or Glomus intraradices, or a patch of dried shoot material labelled with (15)N and (13)carbon (C). In one treatment, hyphae, but not roots, were allowed access to the patch; in the other treatment, access by both hyphae and roots was prevented. When allowed, fungi proliferated in the patch and captured N but not C, although G. intraradices transferred more N than G. hoi to the plant. Plants colonized with G. intraradices had a higher concentration of N than controls. Up to one-third of the patch N was captured by the AM fungi and transferred to the plant, while c. 20% of plant N may have been patch derived. These findings indicate that uptake from organic N could be important in AM symbiosis for both plant and fungal partners and that some AM fungi may acquire inorganic N from organic sources.  相似文献   

3.
The exchange of carbohydrates and mineral nutrients in the arbuscular mycorrhizal (AM) symbiosis must be controlled by both partners in order to sustain an evolutionarily stable mutualism. Plants downregulate their carbon (C) flow to the fungus when nutrient levels are sufficient, while the mechanism controlling fungal nutrient transfer is unknown. Here, we show that the fungus accumulates nutrients when connected to a host that is of less benefit to the fungus, indicating a potential of the fungus to control the transfer of nutrients. We used a monoxenic in vitro model of root organ cultures associated with Glomus intraradices, in which we manipulated the C availability to the plant. We found that G. intraradices accumulated up to seven times more nutrients in its spores, and up to nine times more in its hyphae, when the C pool available to the associated roots was halved. The strongest effect was found for phosphorus (P), considered to be the most important nutrient in the AM symbiosis. Other elements such as potassium and chorine were also accumulated, but to a lesser extent, while no accumulation of iron or manganese was found. Our results suggest a functional linkage between C and P exchange.  相似文献   

4.
5.
采用三室隔网培养装置,以玉米为宿主植物,接种丛枝菌根真菌(AM)(Glomus intraradices),研究了不同用量的植酸钠对AM真菌生长和代谢活性的影响.研究发现,接种AM真菌的植株地上部和根系的P浓度和吸P量,比非菌根植物的提高了1~2倍.外源植酸钠的存在,显著降低了AM真菌根内菌丝的碱性磷酸酶活性,增加了AM真菌在土壤中的菌丝密度.结果表明,外源植酸钠对根内AM真菌碱性磷酸酶活性和真菌根外菌丝的生长具有调控(增减)作用,并且AM真菌提高了植物对土壤固有养分和外源植酸钠中P的吸收和利用.  相似文献   

6.
The regulation of the structural composition and complexity of the mycelium of arbuscular mycorrhizal (AM) fungi is not well understood due to their obligate biotrophic nature. The aim of this study was to investigate the structure of extraradical mycelium at high and low availability of carbon (C) to the roots and phosphorus (P) to the fungus. We used monoxenic cultures of the AM fungus Rhizophagus irregularis (formerly Glomus intraradices) with transformed carrot roots as the host in a cultivation system including a root-free compartment into which the extraradical mycelium could grow. We found that high C availability increased hyphal length and spore production and anastomosis formation within individual mycelia. High P availability increased the formation of branched absorbing structures and reduced spore production and the overall length of runner hyphae. The complexity of the mycelium, as indicated by its fractal dimensions, increased with both high C and P availability. The results indicate that low P availability induces a growth pattern that reflects foraging for both P and C. Low C availability to AM roots could still support the explorative development of the mycelium when P availability was low. These findings help us to better understand the development of AM fungi in ecosystems with high P input and/or when plants are subjected to shading, grazing or any management practice that reduces the photosynthetic ability of the plant.  相似文献   

7.
植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控*   总被引:3,自引:0,他引:3  
采用四室隔网培养装置,以玉米为宿主植物,通过在植物生长室设0、50、250和500 mgPkg-1 4个施磷水平,研究了植株体内的磷营养状况对AM真菌Glomus sinuosum和Glomus intraradices生长及活性的影响。研究发现在不施磷条件下,接种AM真菌G. intraradices显著促进了植物生长和磷的吸收;低磷条件(50 mgPkg-1)下,接种菌根真菌显著促进了植物对磷的吸收,但对植物生长没有明显的影响;而在高磷条件(250 mgPkg-1 和500 mgPkg-1)下,接种菌根真菌不但没有促进植物的生长和磷的吸收,反而对其有抑制作用。随着施磷水平的提高, AM真菌根内菌丝的碱性磷酸酶活性显著下降;与不施磷相比,低量(50 mgPkg-1)供磷增加了AM真菌土壤中根外菌丝的密度,高磷(250 mgPkg-1 和500 mgPkg-1)降低了土壤中根外菌丝的密度。上述结果说明:⑴ 给宿主植物施用磷肥引起的植物磷营养状况的改变,对AM真菌生长和代谢活性具有一定的调控作用;⑵ G. sinuosum和G. intraradices两种AM真菌的生长和代谢活性对施磷水平的响应程度无显著性差异;⑶ 高磷抑制AM真菌生长和代谢活性,使真菌吸磷量减少,可能是造成菌根效应降低的原因之一  相似文献   

8.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1omega5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating (13)C enrichment of 16:1omega5 and compared it with (13)C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [(13)C]glucose. The (13)C enrichment of neutral lipid fatty acid 16:1omega5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for (13)C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1omega5 than for the root specific neutral lipid fatty acid 18:2omega6,9. We labeled plant assimilates by using (13)CO(2) in whole-plant experiments. The extraradical mycelium often was more enriched for (13)C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between (13)C enrichment in neutral lipid fatty acid 16:1omega5 and total (13)C in extraradical mycelia in different systems (r(2) = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the (13)C enrichment of 16:1omega5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

9.
10.
Under defined laboratory conditions it was shown that two glucosinolate-containing plant species, Tropaeolum majus and Carica papaya , were colonized by arbuscular mycorrhizal (AM) fungi, whereas it was not possible to detect AM fungal structures in other glucosinolate-containing plants (including several Brassicaceae). Benzylglucosinolate was present in all of the T. majus cultivars and in C. papaya it was the major glucosinolate. 2-Phenylethylglucosinolate was found in most of the non-host plants tested. Its absence in the AM host plants indicates a possible role for the isothiocyanate produced from its myrosinase-catalysed hydrolysis as a general AM inhibitory factor in non-host plants. The results suggest that some of the indole glucosinolates might also be involved in preventing AM formation in some of the species. In all plants tested, both AM hosts and non-hosts, the glucosinolate pattern was altered after inoculation with one of three different AM fungi ( Glomus mosseae , Glomus intraradices and Gigaspora rosea ), indicating signals between AM fungi and plants even before root colonization. The glucosinolate induction was not specifically dependent on the AM fungus. A time-course study in T. majus showed that glucosinolate induction was present during all stages of mycorrhizal colonization.  相似文献   

11.
在模拟干旱条件下, 研究了接种丛枝菌根(AM)真菌Glomus intraradices对玉米(Zea mays)根部13种质膜水孔蛋白基因表达的影响, 同时观测了AM真菌自身水孔蛋白基因的表达情况。结果表明, 干旱条件下, 除Zm PIP1;3Zm PIP1;4Zm PIP1;5Zm PIP2;2之外的接种处理能显著提高根部其他8种质膜水孔蛋白基因的表达(Zm PIP2;7表达量未检测出), 并且AM真菌菌丝中水孔蛋白基因GintAQP1表达也显著增强。与此同时, 接种处理明显改善了植物水分状况, 提高了叶片水势。AM真菌增强宿主植物根部及自身的水孔蛋白基因的表达对于提高植物抗旱性具有潜在的重要贡献。  相似文献   

12.
Two cvs of alfalfa ( Medicago sativa L.), Gilboa and Moapa 69, were inoculated in glasshouse pots with three arbuscular mycorrhizal (AM) fungi to investigate the efficacy of mycorrhizas with respect to the extent of colonization and sporulation. Paspalum notatum Flugge also was inoculated to describe fungal parameters on a routine pot culture host. Percentage root length of P. notatum colonized by Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe, Glomus intraradices Schenck & Smith, and Gigaspora margarita Becker & Hall increased from 10 to 21 wk, and all fungi sporulated during that period. In alfalfa, only colonization by G. intraradices increased over that time period, and it was the only fungus to sporulate in association with alfalfa at 10 wk. Glomus mosseae did not sporulate after 16–21 wk despite having colonized 30–35% of the root length of both alfalfa cvs. In vitro experiments in which Ri T-DNA-transformed roots of alfalfa were inoculated with AM fungi showed normal mycorrhizal formation by G. intraradices and a hypersensitivity-like response to Gi. margarita . Colonized cells became necrotic, and HPLC analysis indicated increased concentrations of phenolics and isoflavonoids in these root segments. These data strongly support the existence of a degree of specificity between AM fungi and host that might rely on specific biochemical regulatory processes initiated in the host as a result of the attempts at colonization by the fungus.  相似文献   

13.
The influence of external phosphorus (P) on carbon (C) allocation and metabolism as well as processes related to P metabolism was studied in monoxenic arbuscular mycorrhiza cultures of carrot (Daucus carota). Fungal hyphae of Glomus intraradices proliferated from the solid minimal medium containing the colonized roots into C-free liquid minimal medium with different P treatments. The fungus formed around three times higher biomass in P-free liquid medium than in medium with 2.5 mM inorganic P (high-P). Mycelium in the second experiment was harvested at an earlier growth stage to study metabolic processes when the mycelium was actively growing. P treatment influenced the root P content and [(13)C]glucose administered to the roots 7 d before harvest gave a negative correlation between root P content and (13)C enrichment in arbuscular mycorrhiza fungal storage lipids in the extraradical hyphae. Eighteen percent of the enriched (13)C in extraradical hyphae was recovered in the fatty acid 16:1omega5 from neutral lipids. Polyphosphate accumulated in hyphae even in P-free medium. No influence of P treatment on fungal acid phosphatase activity was observed, whereas the proportion of alkaline-phosphatase-active hyphae was highest in high-P medium. We demonstrated the presence of a motile tubular vacuolar system in G. intraradices. This system was rarely seen in hyphae subjected to the highest P treatment. We concluded that the direct responses of the extraradical hyphae to the P concentration in the medium are limited. The effects found in hyphae seemed instead to be related to increased availability of P to the host root.  相似文献   

14.
Mycorrhizas are ubiquitous plant–fungus mutualists in terrestrial ecosystems and play important roles in plant resource capture and nutrient cycling. Sporadic evidence suggests that anthropogenic nitrogen (N) input may impact the development and the functioning of arbuscular mycorrhizal (AM) fungi, potentially altering host plant growth and soil carbon (C) dynamics. In this study, we examined how mineral N inputs affected mycorrhizal mediation of plant N acquisition and residue decomposition in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that either prevented or allowed AM fungal hyphae but not plant roots to grow into the TEST compartments. Wild oat (Avena fatua L.) was planted in the HOST compartments that had been inoculated with either a single species of AM fungus, Glomus etunicatum, or a mixture of AM fungi including G. etunicatum. Mycorrhizal contributions to plant N acquisition and residue decomposition were directly assessed by introducing a mineral 15N tracer and 13C‐rich residues of a C4 plant to the TEST compartments. Results from 15N tracer measurements showed that AM fungal hyphae directly transported N from the TEST soil to the host plant. Compared with the control with no penetration of AM fungal hyphae, AM hyphal penetration led to a 125% increase in biomass 15N of host plants and a 20% reduction in extractable inorganic N in the TEST soil. Mineral N inputs to the HOST compartments (equivalent to 5.0 g N m?2 yr?1) increased oat biomass and total root length colonized by mycorrhizal fungi by 189% and 285%, respectively, as compared with the no‐N control. Mineral N inputs to the HOST plants also reduced extractable inorganic N and particulate residue C proportion by 58% and 12%, respectively, in the corresponding TEST soils as compared to the no‐N control, by stimulating AM fungal growth and activities. The species mixture of mycorrhizal fungi was more effective in facilitating N transport and residue decomposition than the single AM species. These findings indicate that low‐level mineral N inputs may significantly enhance nutrient cycling and plant resource capture in terrestrial ecosystems via stimulation of root growth, mycorrhizal functioning, and residue decomposition. The long‐term effects of these observed alterations on soil C dynamics remain to be investigated.  相似文献   

15.
The present work describes the morphogenesis and cytological characteristics of 'branched absorbing structures' (BAS, formely named arbuscule-like structures, ALS), small groups of dichotomous hyphae formed by the extraradical mycelium of arbuscular mycorrhizal (AM) fungi. Monoxenic cultures of the AM fungus Glomus intraradices Smith & Schenck and tomato ( Lycopersicum esculentum Mill.) roots allowed the continuous, non-destructive study of BAS development. These structures were not observed in axenic cultures of the fungus under different nutritional conditions or in unsuccessful (asymbiotic) monoxenic cultures. However, extraradical mycelium of G. intraradices formed BAS immediately after fungal penetration of the host root and establishment of the symbiosis. The average BAS development time was 7 d under our culture conditions, after which they degenerated, becoming empty septate structures. Certain BAS were closely associated with spore formation, appearing at the spore's substending hypha. Branches of these spore-associated BAS (spore-BAS) usually formed spores. Electron microscopy studies revealed that BAS and arbuscules show several ultrastructural similarities. The possible role of BAS in nutrient uptake by the mycorrhizal plant is discussed.  相似文献   

16.
The production of hydrolytic enzymes from external mycelia associated with roots and colonized soybean roots (Glycine max L.) inoculated with different arbuscular-mycorrhizal (AM) fungi of the genus GLOMUS:, and the possible relationship between these activities and the capacity of the AM fungi to colonize plant roots was studied. There were differences in root colonization and plant growth between the GLOMUS: strains, and also between two isolates of G. mosseae. Hydrolytic activities in the root and external mycelia associated with roots differed in the AM fungi tested. Correlations were only found between the endoxyloglucanase activity of the external mycelia associated with roots of the AM fungi tested and the percentage root colonization or plant growth. However, hydrolytic activities of roots colonized by the different endophytes correlated with those of external mycelia. The hydrolytic activities were not qualitatively different because the endoxyloglucanase from AM colonized roots and the external mycelia did not show a high degree of polymorphism in the different species of fungus tested. The possible role of the hydrolytic activity of external hyphae of AM fungi was discussed as a factor affecting fungal ability to colonize the root and influence plant growth.  相似文献   

17.
宿主植物栽培密度对AM真菌生长发育的影响   总被引:2,自引:0,他引:2  
温室盆栽条件下宿主植物高粱(SorghumvulgarePers.)的栽培密度对丛枝菌根(Arbuscularmycorrhizae,AM)真菌Glomusmosseae(Nicol.&Gerd.)Gerdemann&Trappe生长发育的影响试验结果表明:60株/盆密度处理的根外菌丝量及孢子数均高于其它处理。在一定栽培密度下(20~60株/盆),植株根系可溶性糖浓度与根外菌丝量呈显著负相关,与菌根侵染率呈显著正相关。植株根中磷浓度与根外菌丝量、根外菌丝量与孢子数均呈显著正相关。植株根中磷浓度与菌根侵染率呈显著负相关。结果说明:适当密植虽对植株生长有一定影响,但却促进了真菌的生长,此时菌根共生体有可能由互惠共生开始向偏利共生或弱寄生转化。密植作为一种调控手段,在菌剂生产中能获得较大数量的侵染根段、菌丝及孢子等繁殖体。  相似文献   

18.
The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号