首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文研究了一类具HollingⅡ功能反应的捕食-食饵系统,首先用Cook等人建立的关于超越函数的零点分布定理,研究了一类多时滞捕食-食饵系统的正平衡点的稳定性及局部Hopf分支.进而,再结合吴建宏等人的用等变拓扑度理论建立起的一般泛函微分方程的全局Hopf分支定理,进一步研究了该系统的全局Hopf分支的存在性.  相似文献   

2.
应用Hopf分支理论研究了具有比例确定增长率的Chmostat系统存在Hopf分支的条件,同时得到周期解的存在性及稳定性的结果.  相似文献   

3.
具有变消耗率微生物连续培养模型的定性分析   总被引:1,自引:0,他引:1  
研究了一类具有变消耗率的微生物连续培养系统,当消耗率是线性函数时得到了正平衡点全局渐近稳定的充要条件,当消耗率是二次函数时得到了系统存在极限环的充分条件,同时利用分支理论研究系统存在Hopf分支的条件,判定了极限环的稳定性.  相似文献   

4.
研究了具时滞Gilpin-Ayala型L-V系统中相应产生多周期解和Hopf分支的条件,得到了新的结果.  相似文献   

5.
建立了具有三个时滞的Lotka-Volterra互惠系统;获得了正平衡点和Hopf分支存在的条件等;并对所获得的结果进行了数值模拟.  相似文献   

6.
研究了一类由两个神经元构成的时滞神经网络模型的稳定性和局部Hopf分支,并结合一般泛函微分方程的全局Hopf分支定理,利用度理论研究了全局Hopf分支的存在性.  相似文献   

7.
本文研究一类具Holling-Ⅳ型功能反应函数的捕食者-食饵模型.对模型进行定性分析得知系统正解都是有界的;因此,当平衡点不稳定,系统至少存在一稳定的极限环.本文还运用Poincare形式级数法,得到了正平衡点至多为二阶稳定细焦点的结论.并基于Hopf分支理论得知系统在一定条件下至少存在两个极限环.  相似文献   

8.
研究了一类同时具有霍林Ⅱ型功能反应函数和两个不同时滞的捕食系统.采用交替式考虑的策略,通过稳定性理论、Hopf分支理论等理论分析,相继得出了系统正平衡点稳定的充要条件及存在Hopf分支的充分性条件.作为应用,对具体案例给出了一些数值模拟.  相似文献   

9.
研究一类具有时滞和非线性发生率的生态流行病模型.以滞量为参数,通过分析特征方程,得到了正平衡点局部稳定和Hopf分支存在的条件.同时,应用中心流形定理和规范型理论,得到了分支方向和分支周期解的稳定性计算公式.最后对所得理论结果进行了数值模拟.  相似文献   

10.
双密度制约的Holling Ⅱ型捕食动力系统的定性分析   总被引:1,自引:0,他引:1  
研究食饵具有非线性密度制约捕食者具有线性密度制约的HollingⅡ型捕食动力系统.以食饵的环境容纳量为分支参数,由Hopf分支得到小振幅极限环的存在性,同时也得到了正平衡点的全局稳定性和非小振幅极限环的存在唯一性的充分条件.  相似文献   

11.
In this paper, a predator–prey system with harvesting prey and disease in prey species is given. In the absence of time delay, the existence and stability of all equilibria are investigated. In the presence of time delay, some sufficient conditions of the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analysing the corresponding characteristic equation, and the properties of Hopf bifurcation are given by using the normal form theory and centre manifold theorem. Furthermore, an optimal harvesting policy is investigated by applying the Pontryagin's Maximum Principle. Numerical simulations are performed to support our analytic results.  相似文献   

12.
Time delay is an inevitable factor in neural networks due to the finite propagation velocity and switching speed. Neural system may lose its stability even for very small delay. In this paper, a two-neural network system with the different types of delays involved in self- and neighbor- connection has been investigated. The local asymptotic stability of the equilibrium point is studied by analyzing the corresponding characteristic equation. It is found that the multiple delays can lead the system dynamic behavior to exhibit stability switches. The delay-dependent stability regions are illustrated in the delay-parameter plane, followed which the double Hopf bifurcation points can be obtained from the intersection points of the first and second Hopf bifurcation, i.e., the corresponding characteristic equation has two pairs of imaginary eigenvalues. Taking the delays as the bifurcation parameters, the classification and bifurcation sets are obtained in terms of the central manifold reduction and normal form method. The dynamical behavior of system may exhibit the quasi-periodic solutions due to the Neimark- Sacker bifurcation. Finally, numerical simulations are made to verify the theoretical results.  相似文献   

13.
An susceptible-infective-removed epidemic model incorporating media coverage with time delay is proposed. The stability of the disease-free equilibrium and endemic equilibrium is studied. And then, the conditions which guarantee the existence of local Hopf bifurcation are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction number is less than unity. However, the time delay affects the stability of the endemic equilibrium and produces limit cycle oscillations while the basic reproduction number is greater than unity. Finally, some examples for numerical simulations are included to support the theoretical prediction.  相似文献   

14.
In this paper, we first propose a prey-predator model with prey-stage structure and diffusion. Then we discuss the following three problems: (1) stability of non-negative constant steady states for the reduced ODE system and the corresponding reaction diffusion system with homogeneous Neumann boundary conditions; (2) Hopf bifurcation for the ODE system; (3) Hopf bifurcation created by diffusion.  相似文献   

15.
本文讨论了三种竞争种群的古典GLV系统.对系统所有非负平衡点的稳定性,进行了分析,给出了正平衡点全局稳定的充分条件,应用Hopf分支定理,我们给出了系统具有分支值的充分条件.  相似文献   

16.
Effects of immune delay on symmetric dynamics are investigated within a model of antigenic variation in malaria. Using isotypic decomposition of the phase space, stability problem is reduced to the analysis of a cubic transcendental equation for the eigenvalues. This allows one to identify periodic solutions with different symmetries arising at a Hopf bifurcation. In the case of small immune delay, the boundary of the Hopf bifurcation is found in a closed form in terms of system parameters. For arbitrary values of the time delay, general expressions for the critical time delay are found, which indicate bifurcation to an odd or even periodic solution. Numerical simulations of the full system are performed to illustrate different types of dynamical behaviour. The results of this analysis are quite generic and can be used to study within-host dynamics of many infectious diseases.  相似文献   

17.
Neural field models with transmission delays may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results.  相似文献   

18.
We consider a tritrophic system with one basal and one top species and a large number of primary consumers, and derive upper and lower bounds for the total biomass of the middle trophic level. These estimates do not depend on dynamical regime, holding for fixed point, periodic, or chaotic dynamics. We have two kinds of estimates, depending on whether the predator abundance is zero. All these results are uniform in a self-limitation parameter, which regulates prey diversity in the system. For strong self-limitation, diversity is large; for weak self-limitation, it is small. Diversity depends on the variance of species’ parameter values. The larger this variance, the lower the diversity, and vice versa. Moreover, variation in the parameters of the Holling type II functional response changes the bifurcation character, with the equilibrium state with nonzero predator abundance losing stability. If that variation is small then the bifurcation can lead to oscillations (the Hopf bifurcation). Under certain conditions, there exists a supercritical Hopf bifurcation. We then find a connection between diversity and Hopf bifurcations. We also show that the system exhibits top-down regulation and a hump-shaped diversity-productivity curve.We then extend the model by allowing species to experience self-regulation. For this extended model, explicit estimates of prey diversity are obtained. We study the dynamics of this system and find the following. First, diversity and system dynamics crucially depend on variation in species parameters. We show that under certain conditions, the system undergoes a supercritical Hopf bifurcation. We also establish a connection between diversity and Hopf bifurcations. For strong self-limitation, diversity is large and complex dynamics are absent. For weak self-limitation, diversity is small and the equilibrium with non-zero predator abundance is unstable.  相似文献   

19.
给出了一类考虑收获的时滞捕食系统的局部稳定性判断,并由规范型理论和中心流形定理推导出了Hopf分支的方向、稳定性等条件,最后给出了两个数值模拟例子验证了结论的正确性.  相似文献   

20.
本文应用Hassard的“规范形”方法,讨论了一类具有暂时免疫传染病模型的动力形态.给出了该系统发生Hopf分支的参数曲线,进一步计算出了决定分支方向及稳定性的参数条件,并给出了生态解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号