首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tansley, J. G., C. Clar, M. E. F. Pedersen, and P. A. Robbins. Human ventilatory response to acute hyperoxia during andafter 8 h of both isocapnic and poikilocapnic hypoxia.J. Appl. Physiol. 82(2): 513-519, 1997.During 8 h of either isocapnic or poikilocapnic hypoxia,there may be a rise in ventilation(E) thatcannot be rapidly reversed with a return to higherPO2 (L. S. G. E. Howard and P. A. Robbins. J. Appl. Physiol. 78:1098-1107, 1995). To investigate this further, threeprotocols were compared: 1) 8-hisocapnic hypoxia [end-tidalPCO2(PETCO2 ) held atprestudy value, end-tidal PO2(PETO2) = 55 Torr],followed by 8-h isocapnic euoxia(PETO2 = 100 Torr);2) 8-h poikilocapnic hypoxia followed by 8-h poikilocapnic euoxia; and3) 16-h air-breathing control.Before and at intervals throughout each protocol, theE response to eucapnichyperoxia (PETCO2 held1-2 Torr above prestudy value,PETO2 = 300 Torr) wasdetermined. There was a significant rise in hyperoxic E over 8 hduring both forms of hypoxia (P < 0.05, analysis of variance) that persisted during the subsequent 8-heuoxic period (P < 0.05, analysis ofvariance). These results support the notion that an 8-h period ofhypoxia increases subsequenthyperoxic E, even if acid-base changes have been minimized through maintenance ofisocapnia during the hypoxic period.

  相似文献   

2.
Duringventilatory acclimatization to hypoxia (VAH), the relationship betweenventilation (E) and end-tidalPCO2 (PETCO2) changes.This study was designed to determine 1) whether these changes can be seenearly in VAH and 2) if these changesare present, whether the responses differ between isocapnic andpoikilocapnic exposures. Ten healthy volunteers were studied by usingthree 8-h exposures: 1) isocapnichypoxia (IH), end-tidal PO2(PETO2) = 55 Torr andPETCO2 held at thesubject's normal prehypoxic value;2) poikilocapnic hypoxia (PH),PETO2 = 55 Torr; and3) control (C), air breathing. TheE-PETCO2relationship was determined in hyperoxia (PETO2 = 200 Torr) beforeand after the exposures. We found a significant increase in theslopes ofE-PETCO2 relationship after both hypoxic exposures compared with control (IH vs.C, P < 0.01; PH vs. C,P < 0.001; analysis of covariance with pairwise comparisons). This increase was not significantly different between protocols IH andPH. No significant changes in theintercept were detected. We conclude that 8 h of hypoxia, whetherisocapnic or poikilocapnic, increases the sensitivity of the hyperoxicchemoreflex response to CO2.

  相似文献   

3.
M Fatemian  P A Robbins 《Journal of applied physiology》2001,90(4):1607-14; discussion 1606
The ventilatory sensitivity to CO2, in hyperoxia, is increased after an 8-h exposure to hypoxia. The purpose of the present study was to determine whether this increase arises through an increase in peripheral or central chemosensitivity. Ten healthy volunteers each underwent 8-h exposures to 1) isocapnic hypoxia, with end-tidal PO2 (PET(O2)) = 55 Torr and end-tidal PCO2 (PET(CO2)) = eucapnia; 2) poikilocapnic hypoxia, with PET(O2) = 55 Torr and PET(CO2) = uncontrolled; and 3) air-breathing control. The ventilatory response to CO2 was measured before and after each exposure with the use of a multifrequency binary sequence with two levels of PET(CO2): 1.5 and 10 Torr above the normal resting value. PET(O2) was held at 250 Torr. The peripheral (Gp) and the central (Gc) sensitivities were calculated by fitting the ventilatory data to a two-compartment model. There were increases in combined Gp + Gc (26%, P < 0.05), Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase in chemosensitivity to CO2 within the peripheral chemoreflex.  相似文献   

4.
Ventilatory acclimatization tohypoxia is associated with an increase in ventilation under conditionsof acute hyperoxia(Ehyperoxia) and an increase in acute hypoxic ventilatory response (AHVR). Thisstudy compares 48-h exposures to isocapnic hypoxia( protocol I) with 48-hexposures to poikilocapnic hypoxia ( protocolP) in 10 subjects to assess the importance ofhypocapnic alkalosis in generating the changes observed in ventilatoryacclimatization to hypoxia. During both hypoxic exposures,end-tidal PO2 was maintained at60 Torr, with end-tidal PCO2 held at the subject's prehypoxic level( protocol I) or uncontrolled( protocol P).Ehyperoxiaand AHVR were assessed regularly throughout the exposures.Ehyperoxia(P < 0.001, ANOVA) and AHVR(P < 0.001) increased during thehypoxic exposures, with no significant differences betweenprotocols I andP. The increase inEhyperoxiawas associated with an increase in slope of theventilation-end-tidal PCO2 response(P < 0.001) with no significantchange in intercept. These results suggest that changes in respiratorycontrol early in ventilatory acclimatization to hypoxiaresult from the effects of hypoxia per se and not the alkalosisnormally accompanying hypoxia.

  相似文献   

5.
Effect of different levels of hyperoxia on breathing in healthy subjects   总被引:1,自引:0,他引:1  
Becker, Heinrich F., Olli Polo, Stephen G. McNamara, MichaelBerthon-Jones, and Colin E. Sullivan. Effect of different levelsof hyperoxia on breathing in healthy subjects. J. Appl. Physiol. 81(4): 1683-1690, 1996.Wehave recently shown that breathing 50%O2 markedly stimulates ventilationin healthy subjects if end-tidal PCO2(PETCO2) ismaintained. The aim of this study was to investigate apossible dose-dependent stimulation of ventilation byO2 and to examine possiblemechanisms of hyperoxic hyperventilation. In eight normalsubjects ventilation was measured while they were breathing 30 and 75%O2 for 30 min, withPETCO2 being held constant.Acute hypercapnic ventilatory responses were also tested in thesesubjects. The 75% O2 experimentwas repeated without controllingPETCO2 in 14 subjects, andin 6 subjects arterial blood gases were taken at baseline and at theend of the hyperoxia period. Minute ventilation(I) increased by 21 and 115% with 30 and 75% isocapnic hyperoxia, respectively. The 75%O2 without any control onPETCO2 led toa 16% increase inI, butPETCO2 decreased by3.6 Torr (9%). There was a linear correlation(r = 0.83) between the hypercapnic and the hyperoxic ventilatory response. In conclusion, isocapnic hyperoxia stimulates ventilation in a dose-dependent way, withI more than doubling after 30 min of75% O2. If isocapnia is notmaintained, hyperventilation is attenuated by a decrease in arterialPCO2. There is a correlation betweenhyperoxic and hypercapnic ventilatory responses. On the basis of datafrom the literature, we concluded that the Haldane effect seems to bethe major cause of hyperventilation duringboth isocapnic and poikilocapnichyperoxia.

  相似文献   

6.
To evaluatewhether changes in extracellular glutamate (Glu) levels in the centralnervous system could explain the depressed hypoxic ventilatory responsein hypothermic neonates, 12 anesthetized, paralyzed, and mechanicallyventilated piglets <7 days old were studied. The Glu levels in thenucleus tractus solitarius obtained by microdialysis, minute phrenicoutput (MPO), O2 consumption, arterial blood pressure, heart rate, and arterial blood gases weremeasured in room air and during 15 min of isocapnic hypoxia (inspiredO2 fraction = 0.10) at braintemperatures of 39.0 ± 0.5°C [normothermia (NT)]and 35.0 ± 0.5°C [hypothermia (HT)]. During NT, MPO increased significantly during hypoxia and remained above baseline. However, during HT, there was a marked decrease in MPOduring hypoxia (NT vs. HT, P < 0.03). Glu levels increased significantly in hypoxia during NT;however, this increase was eliminated during HT(P < 0.02). A significant linearcorrelation was observed between the changes in MPO and Glu levelsduring hypoxia (r = 0.61, P < 0.0001). Changes in pH, arterialPO2, O2 consumption, arterial bloodpressure, and heart rate during hypoxia were not different between theNT and HT groups. These results suggest that the depressed ventilatoryresponse to hypoxia observed during HT is centrally mediated and inpart related to a decrease in Glu concentration in the nucleus tractussolitarius.

  相似文献   

7.
Honda, Y., H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. Effect of priorO2 breathing on ventilatoryresponse to sustained isocapnic hypoxia in adult humans.J. Appl. Physiol. 81(4):1627-1632, 1996.Sixteen healthy volunteers breathed 100%O2 or room air for 10 min in random order, then their ventilatory response to sustained normocapnic hypoxia (80% arterial O2saturation, as measured with a pulse oximeter) was studied for 20 min.In addition, to detect agents possibly responsible for the respiratorychanges, blood plasma of 10 of the 16 subjects was chemically analyzed.1) Preliminary O2 breathing uniformly andsubstantially augmented hypoxic ventilatory responses.2) However, the profile ofventilatory response in terms of relative magnitude, i.e., biphasichypoxic ventilatory depression, remained nearly unchanged.3) Augmented ventilatory incrementby prior O2 breathing wassignificantly correlated with increment in the plasma glutamine level.We conclude that preliminary O2administration enhances hypoxic ventilatory response without affectingthe biphasic response pattern and speculate that the excitatory aminoacid neurotransmitter glutamate, possibly derived from augmentedglutamine, may, at least in part, play a role in this ventilatoryenhancement.

  相似文献   

8.
Ventilatory long-term facilitation in unanesthetized rats   总被引:5,自引:0,他引:5  
Wetested the hypothesis that unanesthetized rats exhibit ventilatorylong-term facilitation (LTF) after intermittent, but not continuous,hypoxia. Minute ventilation (E) and carbon dioxide production (CO2) were measured inunanesthetized, unrestrained male Sprague-Dawley rats via barometricplethysmography before, during, and after exposure to continuous orintermittent hypoxia. Hypoxia was either isocapnic [inspiredO2 fraction (FIO2) = 0.08-0.09 and inspired CO2 fraction(FICO2) = 0.04] or poikilocapnic(FIO2 = 0.11 andFICO2 = 0.00). Sixty minutes afterintermittent hypoxia, E orE/CO2 wassignificantly greater than baseline in both isocapnic and poikilocapnicconditions. In contrast, 60 min after continuous hypoxia,E andE/CO2 were notsignificantly different from baseline values. These data demonstrateventilatory LTF after intermittent hypoxia in unanesthetized rats.Ventilatory LTF appeared similar in its magnitude (after accounting forCO2 feedback), time course, and dependence on intermittenthypoxia to phrenic LTF previously observed in anesthetized,vagotomized, paralyzed rats.

  相似文献   

9.
Oelberg, David A., Allison B. Evans, Mirko I. Hrovat, PaulP. Pappagianopoulos, Samuel Patz, and David M. Systrom. Skeletal muscle chemoreflex and pHi inexercise ventilatory control. J. Appl.Physiol. 84(2): 676-682, 1998.To determinewhether skeletal muscle hydrogen ion mediates ventilatory drive inhumans during exercise, 12 healthy subjects performed three bouts ofisotonic submaximal quadriceps exercise on each of 2 days in a 1.5-Tmagnet for 31P-magnetic resonancespectroscopy(31P-MRS). Bilaterallower extremity positive pressure cuffs were inflated to 45 Torr duringexercise (BLPPex) or recovery(BLPPrec) in a randomized orderto accentuate a muscle chemoreflex. Simultaneous measurements were madeof breath-by-breath expired gases and minute ventilation, arterializedvenous blood, and by 31P-MRS ofthe vastus medialis, acquired from the average of 12 radio-frequencypulses at a repetition time of 2.5 s. WithBLPPex, end-exercise minuteventilation was higher (53.3 ± 3.8 vs. 37.3 ± 2.2 l/min;P < 0.0001), arterializedPCO2 lower (33 ± 1 vs. 36 ± 1 Torr; P = 0.0009), and quadricepsintracellular pH (pHi) more acid (6.44 ± 0.07 vs. 6.62 ± 0.07; P = 0.004), compared withBLPPrec. Bloodlactate was modestly increased withBLPPex but without a change inarterialized pH. For each subject, pHi was linearly relatedto minute ventilation during exercise but not to arterialized pH. Thesedata suggest that skeletal muscle hydrogen ion contributes to theexercise ventilatory response.

  相似文献   

10.
León-Velarde, Fabiola, Manuel Vargas, Carlos Monge-C.,Robert W. Torrance, and Peter A. Robbins. AlveolarPCO2 andPO2 of high-altitude natives livingat sea level. J. Appl.Physiol. 81(4): 1605-1609, 1996.Thisstudy was designed to determine whether subjects born at high altitude(HA; 2,000 m or above) who subsequently move to near sea level (SL)develop end-tidal PCO2(PETCO2) andPO2(PETO2) valuesthat equal those of SL natives living near SL. A total of 108 male HAnatives living near SL were identified by survey of a district in Lima,Peru, and a further 108 male SL natives from the same district wereidentified as control subjects. Of these subjects, satisfactory datafor inclusion in the study were obtained from 93 HA and 82 SL subjects.Mean PETCO2 and PETO2 values were 37.7 ± 2.5 (SD) and 104.7 ± 3.2 Torr, respectively, in HA subjects and37.7 ± 2.2 and 104.8 ± 3.0 Torr, respectively, in SL subjects.The average difference between SL natives and HA natives forPETCO2 was 0.07 Torr(0.64 to 0.78; 95% confidence interval) and forPETO2 was 0.05 Torr(0.89 to 0.99, 95% confidence interval). The average age andweight of the SL and HA subjects did not differ, but the HA subjectswere shorter and tended to have larger vital capacities, consistentwith their origin at HA. We conclude that thePETCO2 andPETO2 near SL of SL nativesand HA natives do not differ.

  相似文献   

11.
Williams, J. S., and T. G. Babb. Differences betweenestimates and measured PaCO2 during restand exercise in older subjects. J. Appl.Physiol. 83(1): 312-316, 1997.ArterialPCO2 (PaCO2) has been estimated duringexercise with good accuracy in younger individuals by using the Jonesequation(PJCO2)(J. Appl. Physiol. 47: 954-960,1979). The purpose of this project was to determine the utility ofestimating PaCO2 from end-tidal PCO2(PETCO2) orPJCO2at rest, ventilatory threshold (Th), and maximalexercise (Max) in older subjects. PETCO2 was determined fromrespired gases simultaneously (MGA 1100) with arterial blood gases(radial arterial catheter) in 12 older and 11 younger subjects at restand during exercise. Mean differences were analyzed with pairedt-tests, and relationships between theestimated PaCO2 values and the actualvalues of PaCO2 were determined withcorrelation coefficients. In the older subjects, PETCO2 was not significantlydifferent from PaCO2 at rest (1.2 ± 4.3 Torr), Th (0.4 ± 2.5), or Max(0.8 ± 2.7), and the two were significantly(P < 0.05) correlated atth (r = 0.84) andMax (r = 0.87) but not atrest (r = 0.47).PJCO2was similar to PaCO2 at rest (1.0 ± 3.9) and th (1.3 ± 2.3) but significantly lower at Max (3.0 ± 2.6), and the two weresignificantly correlated at th(r = 0.86) and Max(r = 0.80) but not at rest (r = 0.54).PETCO2 was significantlyhigher than PaCO2 during exercise in theyounger subjects but similar to PaCO2 at rest.PJCO2was similar to PaCO2 at rest andth but significantly lower at Max in youngersubjects. In conclusion, our data demonstrate thatPaCO2 during exercise is betterestimated by PETCO2 than byPJCO2in older subjects, contrary to what is observed in younger subjects.This appears to be related to the finding thatPETCO2 does not exceedPaCO2 during exercise in older subjects,as occurs in the younger subjects. However,PaCO2 at rest is best estimated byPJCO2in both younger and older subjects.

  相似文献   

12.
It remainscontroversial whether lactate formation during progressive dynamicexercise from submaximal to maximal effort is due to muscle hypoxia. Tostudy this question, we used direct measures of arterial and femoralvenous lactate concentration, a thermodilution blood flow technique,phosphorus magnetic resonance spectroscopy (MRS), and myoglobin (Mb)saturation measured by 1H nuclearMRS in six trained subjects performing single-leg quadriceps exercise.We calculated net lactate efflux from the muscle and intracellularPO2 with subjects breathing room airand 12% O2. Data were obtained at50, 75, 90, and 100% of quadriceps maximalO2 consumption at each fraction ofinspired O2. Mb saturation wassignificantly lower in hypoxia than in normoxia [40 ± 3 vs. 49 ± 3% (SE)] throughout incremental exercise to maximalwork rate. With the assumption of aPO2 at which 50% of Mb-binding sitesare bound with O2 of 3.2 Torr,Mb-associated PO2 averaged 3.1 ± 0.3 and 2.3 ± 0.2 Torr in normoxia and hypoxia, respectively. Netblood lactate efflux was unrelated to intracellular PO2 across the range of incrementalexercise to maximum (r = 0.03 and 0.07 in normoxia and hypoxia, respectively) but linearly related toO2 consumption(r = 0.97 and 0.99 in normoxia andhypoxia, respectively) with a greater slope in 12%O2. Net lactate efflux was alsolinearly related to intracellular pH(r = 0.94 and 0.98 in normoxia andhypoxia, respectively). These data suggest that with increasing workrate, at a given fraction of inspiredO2, lactate efflux is unrelated tomuscle cytoplasmic PO2, yet theefflux is higher in hypoxia. Catecholamine values from comparablestudies are included and indicate that lactate efflux in hypoxia may bedue to systemic rather than intracellular hypoxia.

  相似文献   

13.
Nitric oxide (NO) production by inducible NO synthase (iNOS) is dependent on O2 availability. The duration and degree of hypoxia that limit NO production are poorly defined in cultured cells. To investigate short-term O2-mediated regulation of NO production, we used a novel forced convection cell culture system to rapidly (response time of 1.6 s) and accurately (±1 Torr) deliver specific O2 tensions (from <1 to 157 Torr) directly to a monolayer of LPS- and IFN-stimulated RAW 264.7 cells while simultaneously measuring NO production via an electrochemical probe. Decreased O2 availability rapidly (30 s) and reversibly decreased NO production with an apparent KmO2 of 22 (SD 6) Torr (31 µM) and a Vmax of 4.9 (SD 0.4) nmol·min–1·10–6 cells. To explore potential mechanisms of decreased NO production during hypoxia, we investigated O2-dependent changes in iNOS protein concentration, iNOS dimerization, and cellular NO consumption. iNOS protein concentration was not affected (P = 0.895). iNOS dimerization appeared to be biphasic [6 Torr (P = 0.008) and 157 Torr (P = 0.258) >36 Torr], but it did not predict NO production. NO consumption was minimal at high O2 and NO tensions and negligible at low O2 and NO tensions. These results are consistent with O2 substrate limitation as a regulatory mechanism during brief hypoxic exposure. The rapid and reversible effects of physiological and pathophysiological O2 tensions suggest that O2 tension has the potential to regulate NO production in vivo. inducible nitric oxide synthase; substrate limitation; nitric oxide consumption  相似文献   

14.
Important role of carotid afferents in control of breathing   总被引:5,自引:0,他引:5  
The purpose of the present study was todetermine the effect on breathing in the awake state of carotid bodydenervation (CBD) over 1-2 wk after denervation. Studies werecompleted on adult goats repeatedly before and1) for 15 days after bilateral CBD (n = 8),2) for 7 days after unilateral CBD(n = 5), and3) for 15 days after sham CBD(n = 3). Absence of ventilatorystimulation when NaCN was injected directly into a common carotidartery confirmed CBD. There was a significant(P < 0.01) hypoventilation during the breathing of room air after unilateral and bilateral CBD. Themaximum PaCO2 increase (8 Torr forunilateral and 11 Torr for bilateral) occurred ~4 days afterCBD. This maximum was transient because by 7 (unilateral)to 15 (bilateral) days after CBD, PaCO2 was only 3-4 Torr above control.CO2 sensitivity was attenuated from control by 60% on day 4 afterbilateral CBD and by 35% on day 4 after unilateral CBD. This attenuation was transient, because CO2 sensitivity returned tocontrol temporally similar to the return ofPaCO2 during the breathing of room air.During mild and moderate treadmill exercise 1-8 days afterbilateral CBD, PaCO2 was unchanged fromits elevated level at rest, but, 10-15 days after CBD,PaCO2 decreased slightly from restduring exercise. These data indicate that1) carotid afferents are animportant determinant of rest and exercise breathing and ventilatoryCO2 sensitivity, and2) apparent plasticity within theventilatory control system eventually provides compensation for chronicloss of these afferents.

  相似文献   

15.
Dwinell, M. R., P. L. Janssen, J. Pizarro, and G. E. Bisgard. Effects of carotid body hypocapnia during ventilatory acclimatization to hypoxia. J. Appl.Physiol. 82(1): 118-124, 1997.Hypoxicventilatory sensitivity is increased during ventilatory acclimatizationto hypoxia (VAH) in awake goats, resulting in a time-dependent increasein expired ventilation (E). Theobjectives of this study were to determine whether the increasedcarotid body (CB) hypoxic sensitivity is dependent on the level of CB CO2 and whether the CBCO2 gain is changed during VAH.Studies were carried out in adult goats with CB blood gases controlled by an extracorporeal circuit while systemic (central nervous system) blood gases were regulated independently by the level of inhaled gases. Acute E responsesto CB hypoxia (CB PO2 40 Torr) and CBhypercapnia (CB PCO2 50 and 60 Torr)were measured while systemic normoxia and isocapnia were maintained. CBPO2 was then lowered to 40 Torr for 4 h while the systemic blood gases were kept normoxic and normocapnic.During the 4-h CB hypoxia, E increasedin a time-dependent manner. Thirty minutes after return to normoxia,the ventilatory response to CB hypoxia was significantly increasedcompared with the initial response. The slope of the CBCO2 response was also elevatedafter VAH. An additional group of goats(n = 7) was studied with asimilar protocol, except that CB PCO2was lowered throughout the 4-h hypoxic exposure to prevent reflexhyperventilation. CB PCO2 wasprogressively lowered throughout the 4-h CB hypoxic period to maintainE at the control level. After the 4-hCB hypoxic exposure, the ventilatory response to hypoxia was alsosignificantly elevated. However, the slope of the CBCO2 response was not elevatedafter the 4-h hypoxic exposure. These results suggest that CBsensitivity to both O2 andCO2 is increased after 4 h of CBhypoxia with systemic isocapnia. The increase in CB hypoxic sensitivityis not dependent on the level of CBCO2 maintained during the 4-hhypoxic period.

  相似文献   

16.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

17.
Lai, Jie, and Eugene N. Bruce. Ventilatory stability totransient CO2 disturbances inhyperoxia and normoxia in awake humans. J. Appl.Physiol. 83(2): 466-476, 1997.Modarreszadeh andBruce (J. Appl. Physiol. 76:2765-2775, 1994) proposed that continuous random disturbances inarterial PCO2 are more likely toelicit ventilatory oscillation patterns that mimic periodic breathingin normoxia than in hyperoxia. To test this hypothesis experimentally,in nine awake humans we applied pseudorandom binary inspiredCO2 fraction stimulation innormoxia and hyperoxia to derive the closed-loop and open-loopventilatory responses to a briefCO2 disturbance in terms ofimpulse responses and transfer functions. The closed-loop impulseresponse has a significantly higher peak value [0.143 ± 0.071 vs. 0.079 ± 0.034 (SD)l · min1 · 0.01 lCO21,P = 0.014] and a significantlyshorter 50% response duration (42.7 ± 13.3 vs. 72.3 ± 27.6 s,P = 0.020) in normoxia than in hyperoxia. Therefore, the ventilatory responses to transientCO2 disturbances are less damped(but generally not oscillatory) in normoxia than in hyperoxia. For theclosed-loop transfer function, the gain in normoxia increasedsignificantly (P < 0.0005), while phase delay decreased significantly (P < 0.0005). The gain increased by 108.5, 186.0, and 240.6%, whilephase delay decreased by 26.0, 18.1, and 17.3%, at 0.01, 0.03, and0.05 Hz, respectively. Changes in the same direction were found for theopen-loop system. Generally, an oscillatory ventilatory response to asmall transient CO2 disturbance isunlikely during wakefulness. However, changes in parameters that leadto additional increases in chemoreflex loop gain are more likely toinitiate oscillations in normoxia than in hyperoxia.

  相似文献   

18.
Rozenfeld, Ranna A., Michael K. Dishart, Tor IngeTønnessen, and Robert Schlichtig. Methods for detecting localintestinal ischemic anaerobic metabolic acidosis byPCO2. J. Appl. Physiol. 81(4): 1834-1842, 1996.Gut ischemia isoften assessed by computing an imaginary tissue interstitial pH fromarterial plasma HCO3 and thePCO2 in a saline-filled balloontonometer after equilibration with tissuePCO2 (PtiCO2).PtiCO2 mayalternatively be assumed equal to venous PCO2(PvCO2) in that region of gut. The ideais that as blood flow decreases, gutPtiCO2 andPvCO2 will increase to the maximumaerobic value, i.e., maximum respiratoryPvCO2(PvCO2 rmax). Above a "critical" anaerobic threshold, lactate(La) generation, bytitration of tissue HCO3, should raisePtiCO2abovePvCO2 rmax.During progressive selective whole intestinal flow reduction insix pentobarbital-anesthetized pigs, we usedPCO2 electrodes to test thehypotheses that criticalPtiCO2is achieved earlier in mucosa than in serosa and thatPvCO2 rmax,computed using an in vitro model, predicts criticalPtiCO2. Wedefined criticalPtiCO2 as theinflection ofPtiCO2-PvCO2vs. O2 delivery(O2)plots. CriticalO2for O2 uptake was 12.55 ± 2 ml · kg1 · min1.Critical PtiCO2 for mucosaand serosa was achieved at similar whole intestineO2(13.90 ± 5 and 13.36 ± 5 ml · kg1 · min1,P = NS). CriticalPtiCO2 (129 ± 24 and 96 ± 21 Torr) exceeded PvCO2 rmax(62 ± 3 Torr). During ischemia,La excretion into portalvenous blood was matched by K+excretion, causing PvCO2 to increaseonly slightly, despitePtiCO2 risingto 380 ± 46 (mucosa) and 280 ± 38 (serosa) Torr. These resultssuggest that mucosa and serosa become dysoxic simultaneously, thatischemic dysoxic gut is essentially unperfused, and that in vitropredictedPvCO2 rmaxunderestimates criticalPtiCO2.

  相似文献   

19.
Gautier, Henry, Cristina Murariu, and Monique Bonora.Ventilatory and metabolic responses to ambient hypoxia orhypercapnia in rats exposed to CO hypoxia. J. Appl. Physiol.83(1): 253-261, 1997.We have investigated at ambienttemperatures (Tam) of 25 and5°C the effects of ambient hypoxia(Hxam; fractional inspired O2 = 0.14) and hypercapnia(fractional inspiredCO2 = 0.04) on ventilation (),O2 uptake(O2), andcolonic temperature (Tc) in 12 conscious rats before and after carotid body denervation (CBD). Therats were concomitantly exposed to CO hypoxia (HxCO; fractional inspired CO = 0.03-0.05%), which decreases arterial O2 saturation by ~25-40%.The results demonstrate the following. 1) AtTam of 5°C, in both intact andCBD rats,/O2 islarger when Hxam orCO2 is associated withHxCO than with normoxia. At Tam of 25°C, this is also thecase except for CO2 in CBD rats. 2) AtTam of 5°C, the changes inO2 andTc seem to result from additiveeffects of the separate changes induced byHxam,CO2, andHxCO. It is concluded that, inconscious rats, central hypoxia does not depress respiratory activity.On the contrary, particularly whenO2 is augmented during acold stress, both/O2during HxCO and the ventilatoryresponses to Hxam andCO2 are increased. The mechanismsinvolved in this relative hyperventilation are likely to involvediencephalic integrative structures.

  相似文献   

20.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号