首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

2.
Sieve element plasma membranes reveal a unique distribution of intramembrane particles (IMPs) in tissue cultures fixed and cyroprotected prior to freeze-fracturing. Sieve element IMPs are smaller than those found in the plasma membranes of callus parenchyma cells from these same cultures. The PF/EF ratio of plasma membrane IMPs is 9.6 for parenchyma cells and 1.21 for sieve elements. The increased binding of IMPs to the sieve element E face may be related to the role of membrane proteins in the loading of sucrose and other molecules by these cells. The enlargement of the cell wall at the site of sieve area pores creates complementary ridges and depressions in the E and P fracture faces of sieve element plasma membranes. No alteration of IMP density is seen at the sieve area pore site.  相似文献   

3.
We examined the effect of a local anesthetic, dibucaine, on the plasma membrane of Tetrahymena pyriformis strain NT-1 using freeze-fracture electron microscopy. Intramembranous particles (IMPs) were distributed homogeneously on the plasma membrane of untreated cells. But, when Tetrahymena cells had been treated with 1.3 mM dibucaine for 5 min at growth temperature, freeze-fracture micrographs of the plasma membrane showed marked alterations. Although IMPs showed an almost homogeneous distribution, their density was elevated markedly on the protoplasmic fracture (PF) face but greatly reduce on the exoplasmic fracture (EF) face. Areas around deciliated portions had a reverse IMP density distribution for the PF and EF faces. These results suggest that dibucaine induced vertical displacement of the IMPs in the plasma membrane.  相似文献   

4.
M. Melkonian  H. Robenek 《Protoplasma》1980,104(1-2):129-140
Summary Eyespot membranes in zoospores of the green algaChlorosarcinopsis gelatinosa were studied with the freeze-fracture technique. The PF of the plasmalemma overlying the eyespot lipid globules contains significantly greater numbers of intramembraneous particles (IMP; 8,200 IMP/m2) compared to other areas of the plasmalemma (2,100 IMP/m2). In the eyespot area the EF of the plasmalemma reveals no IMP, but regularly arranged depressions corresponding to the PF particles. Sizes of PF particles are not significantly different between the eyespot area and other areas of the plasmalemma. Zoospore settlement starts approximately two hours after release and involves in sequence, rounding up of the cells, retraction of the flagella and secretion of a cell wall. Eyespot membrane specializations on the PF of the plasmalemma disappear during flagellar retraction and before cell wall secretion.The functional significance of eyespot membrane specializations is discussed in accordance with the view that these membranes are engaged in photoreception and primary sensory transduction relating to green algal phototaxis.  相似文献   

5.
Separated T and B lymphocytes from human peripheral blood were studied using the freeze-fracture technique. Quantitative analysis performed on density and size of intramembranous particles (IMPs) present on both fracture faces of the plasma membrane has revealed remarkable differences between cells belonging to the two main lymphocyte populations. In particular: (a) both fracture faces of the cytoplasmic membrane of B lymphocytes exhibit larger particles than T lymphocytes; (b) the mean densities, on both protoplasmic (PF) and external (EF) fracture faces, in B lymphocytes are lower than in T lymphocytes; (c) in B cells the partition ratio of particles between PF and EF is reversed with respect to T cells; (d) on both fracture faces of B lymphocytes, the IMP densities present a normal distribution while on T cells, density values show bimodal distributions indicating the existence of two cell subsets differing in particle density.  相似文献   

6.
Two strains of Trichomonas vaginalis, JH162A , with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces ( PFs ) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad . In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of approximately 9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae , as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta -type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.  相似文献   

7.
Dieter Volkmann 《Planta》1984,162(5):392-403
Growing root hairs of cress (Lepidium sativum L.) were investigated using freeze-fracture and electron-microscopic techniques. Three zones of differentiation could be detected: the tip zone, the zone of vacuolation and the foot zone. Corresponding to these zones, the plasmatic fracture face of the plasma membrane showed areas of pronounced differentiation with respect to the distribution and frequency of intramembranous particles (IMPs). The tip zone was characterized by an irregular fracture plane caused by a large number of blisters which were more or less free of IMPs. These blisters coincided in size and shape with Golgi vesicles accumulated in the ground cytoplasm near the very tip. Outside these blisters, IMPs were randomly distributed. The surrounding cell wall was very thin and mainly composed of amorphous material. The plasma membrane of the vacuolation zone often revealed areas of hexagonally ordered particles (HOPS). Such patterns of particles were observed in chemically fixed and unfixed root hairs with a maximum surface density of 1200 HOPS per area. Mostly, however, 15–50 HOPS per area were found. The number of such areas increased with increasing distance from the tip up to five areas per m2. Additionally, imprints of large cellulose microfibrils could be detected in unfixed material; they were mainly parallel to the root-hair axis and sometimes ended in areas of HOPS. However, HOPS were observed only in approximately 60% of the root hairs. Otherwise, large areas free of IMPs were interspersed between areas of randomly distributed IMPs. The particle frequency was relatively low and varied greatly in the tip as well as in the vacuolation zone, that is, from 1200 to 2000 IMPs m-2. Finally, the plasma membrane of the foot zone showed a very constant number of approx. 2000 IMPs m-2. These particles were mainly distinct and randomly distributed. In this zone, HOPS were never observed in spite of the fact that the cell wall was composed of numerous parallel-running cellulose microfibrils. Since membrane material is mainly incorporated in the tip zone where IMPs are statistically distributed, the results indicate that the plasma membrane of the outgrowing part of the root-hair cells is characterized by a high lateral mobility of its components. Furthermore, they indicate that specifically arranged particles are involved in the synthesis of cellulose microfibrils. These areas of HOPS seem to be locally restricted and — or limited with respect to their lifetime.Abbreviations cmf(s) cellulose microfibril(s) - EF extraplasmatic fracture face - HOPS hexagonally ordered particles - IMP intramembranous particle - PF plasmatic fracture face - pm plasma membrane Dedicated to Professor Dr. Kurt Mühlethaler, Zürich, on the occasion of his 65th birthday  相似文献   

8.
We have previously demonstrated (Armond, P. A., C. J. Arntzen, J.-M. Briantais, and C. Vernotte. 1976. Arch. Biochem. Biophys. 175:54-63; and Davis, D. J., P. A. Armond, E. L. Gross, and C. J. Arntzen. 1976. Arch. Biochem. Biophys. 175:64-70) that pea seedlings which were exposed to intermittent illumination contained incompletely developed chloroplasts. These plastids were photosynthetically competent, but did not contain grana. We now demonstrate that the incompletely developed plastids have a smaller photosynthetic unit size; this is primarily due to the absence of a major light-harvesting pigment-protein complex which is present in the mature membranes. Upon exposure of intermittent- light seedlings to continuous white light for periods up to 48 h, a ligh-harvesting chlorophyll-protein complex was inserted into the chloroplast membrane with a concomitant appearance of grana stacks and an increase in photosynthetic unit size. Plastid membranes from plants grown under intermediate light were examined by freeze-fracture electron microscopy. The membrane particles on both the outer (PF) and inner (EF) leaflets of the thylakoid membrane were found to be randomly distributed. The particle density of the PF fracture face was approx. four times that of the EF fracture face. While only small changes in particle density were observed during the greening process under continuous light, major changes in particle size were noted, particularly in the EF particles of stacked regions (EFs) of the chloroplast membrane. Both the changes in particle size and an observed aggregation of the EF particles into the newly stacked regions of the membrane were correlated with the insertion of light-harvesting pigment- protein into the membrane. Evidence is presented for identification of the EF particles as the morphological equivalent of a "complete" photosystem II complex, consisting of a phosochemically active "core" complex surrounded by discrete aggregates of the light-harvesting pigment protein. A model demonstrating the spatial relationships of photosystem I, photosystem II, and the light-harvesting complex in the chloroplast membrane is presented.  相似文献   

9.
The plasmalemma of mature and growing olfactory axons of the bullfrog has been studied by freeze-fracture. Intramembrane particles (IMPs) of mature olfactory axons are found to be uniformly distributed along the shaft. However, during growth, a decreasing gradient of IMP density is evident along the somatofugal axis. The size histograms of axolemmal IMPs from different segments of growing nerve reveal regional differences in the particle composition. The distribution of each individual size class of particles along the growing nerve forms a decreasing gradient in the somatofugal direction; the slope of these gradients varies directly with particle diameter. These size-dependent density gradients are consistent with a process of lateral diffusion of membrane components that are inserted proximally into the plasma membrane. The membrane composition of the growth cone, however, appears to be independent of these diffusion gradients; it displays a mosaic pattern of discrete domains of high and low particle densities. The relative IMP profiles of these growth cone regions are similar to one another but contain higher densities of large IMPs than the neighboring axonal shaft. The shifting distributions of intramembrane particles that characterize the sprouting neuron give new insights into cellular processes that may underlie the establishment of the functional polarity of the neuron and into the dynamics of axolemmal maturation.  相似文献   

10.
Hyperthermia in the range 41-45 degrees C can induce wide biochemical, physiological, and morphological changes in mammalian cells both in vivo and in vitro. In general, its effects on membranes, particularly on the plasma membrane, are still poorly understood. To investigate the effects of heat on this cell structure, Chinese hamster V79 fibroblasts were exposed to 43 degrees C hyperthermia for 1 h, immediately fixed with glutaraldehyde after treatment, and freeze-fractured for electron microscopic examination. Particular attention was given to the density and size of intramembranous particles (IMPs) on both protoplasmic (PF) and external (EF) fracture faces of the plasma membrane. The quantitative study performed by an interactive image analyzer on the IMPs, generally reported as plasma membrane proteins, showed in heat-treated cells a statistically significant increase in their density and size on both fracture faces. The differences observed demonstrate that in our experimental conditions, hyperthermia in plasma membranes produces structural changes whose biological significance has to be clarified. Moreover, our findings seem to support recent data indicating an involvement of membrane proteins in the cell response to hyperthermia.  相似文献   

11.
Treatment of male Wistar rats with estradiol valerate induced alterations in hepatic gap junctions as visualized by the freeze-fracture technique. The alterations involved the spacing, and regularity of packing of the membrane particles of the P face (PF) and complementary pits on the E face (EF), as well as internalization and changes in the number, size and shape of the junctional domains. In approximately 20% of the PF's of the lateral membrane of treated animals the nonjunctional IMPs were aggregated, while the bile canalicular membrane was never involved, maintaining its random distribution of particles. It is proposed that the changes in junctional area and the more general arrangement of the junctional particles may indicate a decrease in coupling between hepatocytes. The invaginations of gap junctions may represent a means for removing gap junctional membrane from the surface or may be an expression of a higher turnover of gap junctions. We assume that the alterations observed here are due to the specific effects of estrogen. This study addresses in detail a number of possible sites of activity and modes of action for estrogen.  相似文献   

12.
The membrane ultrastructure of isolated rat liver peroxisomes has been observed by rapid freezing and freeze-fracture techniques. Unidirectional and rotary shadowing allows a clear visualization of the intramembrane particles (IMPs) on both the protoplasmic fracture (PF) leaflet and the endoplasmic fracture (EF) leaflet and reveals an asymmetric distribution of IMPs. Both fracture faces were uniformly studded by IMPs, and the frequency was about seven times higher on the P face (2322 per 1.0 micron2) than on the E face (322 per 1.0 micron2). Administration of the peroxisomal proliferator clofibrate (ethyl-p-chlorophenoxyisobutyrate) induced a marked increase in the frequency of IMPs on both the P face (2.2-fold) and the E face (1.7-fold). The average size decreased (P less than 0.001) from 45.7 +/- 16.5 nm2 to 35.2 +/- 10.8 nm2 on the P face. A similar increase in the frequency of IMPs was observed on the P face (1.8-fold) and the E face (1.8-fold) of peroxisomes from rats fed a semisynthetic diet containing 20% (w/w) of partially hydrogenated fish oil. The average size increased (P less than 0.001) from 36.6 +/- 19.7 to 50.0 +/- 23.5 nm2 on the E face. This study demonstrates alterations both in frequency and size distribution of IMPs in liver peroxisomal membranes on exposure of rats to agents known to induce peroxisomal proliferation. The increase in frequency of IMPs was as expected from the observed increase in one of the major integral membrane polypeptides, with apparent molecular mass of 69 (or 70) kDa, in proliferating rat liver peroxisomes.  相似文献   

13.
Remarkable differences among various membranes of bone cells became evident by examination of freeze-fracture replicas. In osteoclasts, three types of intramembranous particles (IMPs) were identified based on their size and shape: two sizes of isolated globular particles (8 and 12 nm in diameter) and rod-shaped, linear aggregates (8 x 30 nm in dimension). Furthermore, the density and distribution pattern of these IMPs enabled us to distinguish three different domains of membranes of osteoclasts including ruffled border, clear zone, and basolateral regions, as were also observed in thin sections. The highest density of IMPs was 3,500-4,000/microns2 in the ruffled border membrane, and these IMPs included linear aggregates among the usual globular particles. Linear aggregated particles were also observed in the membrane of cytoplasmic vesicles in the vicinity of the ruffled border region, but not in this membrane in other bone cells. In attached osteoclasts, the distribution patterns and densities of IMPs in each ruffled-finger and -plate were extremely variable, from closely to the loosely packed membrane particles. Focal aggregates of membrane particles were also frequently encountered. An important outcome of the present study was the finding that the presence of linear aggregated particles proved to be an additional criterion for distinguishing membrane domains in freeze-replicas of osteoclasts. The surface of the clear zone membrane was not smooth in profile, but revealed a number of eminences that were almost free of particles. Basolateral membranes exhibited a particle density of 2,400/microns2. Globular particles were homogeneously scattered in random fashion on their exposed fracture faces. In some cases, aggregates of IMPs on the basolateral membranes were encountered. In comparison with the ruffled fingers, microprojections from the basolateral surface showed a lesser density of IMPs and were devoid of rod-shaped or linear aggregated particles. Differences between osteoblasts and osteocytes were apparent in the density and the size of IMPs. The membranes of osteoblasts and osteocytes contained the same types of globular particles as seen in osteoclasts. Various sizes of gap junctions were located only on basolateral membranes of the osteoblasts. In contrast, no cellular junctions were observed between osteoclasts and any other type of cells.  相似文献   

14.
Well-defined ferritin-conjugated lectins were used to map glycoconjugates on the surface of sprouting neurons from rat superior cervical ganglion (SCG) and spinal cord (SC). The cultured neurons were exposed to the markers and processed for electron microscopy, and the number of ferritin particles per unit area of plasmalemma was measured in three different regions: perikaryon, neuritic shaft, and growth cone. Three different binding patterns are observed for different lectin: equal receptor density throughout the plasmalemma of the growing neuron (e.g., Ricinus communis agglutinin I in SCG neurons), gradual decrease (e.g., wheat-germ agglutinin in SCG and SC neurons) and gradual increase (e.g., Ricinus communis agglutinin II in SC neurons) in the density of lectin receptors as one moves from the perikaryon to the growth cone. Furthermore, lectin receptor densities differ in the two types of neurons analyzed. We can conclude that the plasmalemma of the growth cone has biochemical properties different from those of the perikaryon, and that the neuron's structural polarity is expressed in its surface glycoconjugates. This phenomenon may be related to the growth cone's special functional properties and to the process of expansion of the plasma membrane.  相似文献   

15.
During the imbibition of seeds in polyethyleneglycol (PEG),increasing amounts of ATP accumulated up to 24 h. Similar amountsaccumulated in the seeds during 4–5 h of imbibition inwater. Radioactive amino acids were increasingly incorporatedin the acid-insoluble fraction up to 24 h imbibition in PEG,as well as in water, after which a sharp decrease occurred upto 5 d of imbibition. If seeds were imbibed in PEG or waterin the presence of radioactive acetate, water-insoluble radioactivityincreased linearly in seeds during 5 d of imbibition. The amountsof incorporated amino acids or acetate were about double inPEG-imbibed as compared with in water-imbibed seed. The incorporationof AMP into the acid-insoluble fraction in seeds imbibed inPEG in the presence of radioactive AMP levelled off after 24h followed by a sharp decrease of up to 10% of the peak 5 dafter the start of imbibition. In water-imbibed seeds the incorporationof AMP continued to increase during at least 5 d of imbibition.During redrying of PEG-treated seeds (24 h), at least 80% ofthe accumulated ATP decreased during 18 d. The total radioactiveamino acids and nucleotide decreased during 3 d of redryingby 20% and 60%, respectively. At that time, the acid-insolubleincorporates increased by 20% and 50%, respectively. Some ofthe AMP was released as CO2. Key words: AMP, Germination, Nucleic acid synthesis, Osmoconditioning, PEG, Protein synthesis  相似文献   

16.
Spiroplasma citri and the corn stunt spiroplasma in sieve cells of Catharanthus roseus were investigated using freeze -fracture electron microscopy. Only the particle studded fracture faces of the plasmalemma could be exposed and not the surfaces of both the extraplasmatic and the plasmatic leaflet. The extraplasmatic fracture face (EF) shows a lower particle density than the plasmatic fracture face (PF). On the PF particle free areas could be observed, which are helically arranged in helical filaments. We suppose that the cytoplasmic fibrils, probably involved in motility processes and in maintaining the helical shape, underly the particle free area only.  相似文献   

17.
(1) Using asolectin (mixed soybean phospholipids) liposomes, extra lipid, with or without additional plastoquinone, has been introduced into isolated thylakoid membranes of pea chloroplasts. (2) Evidence for this lipid enrichment was obtained from freeze-fracture which indicated that a decrease in the numbers of EF and PF particles per unit area of membrane occurred with increasing lipid incorporation. The decrease was not due to loss of integral membrane polypeptides as judged by assay of cytochrome present or SDS-polyacrylamide gel electrophoresis of lipid-enriched membrane fractions. Moreover, the enrichment procedure did not lead to extraction of low molecular weight lipophilic membrane components or of thylakoid membrane lipids. (3) The introduction of phospholipids into the membrane affected steady-state electron transport. Inhibition of electron transport was observed when either water (Photosystem (PS) II + PS I) or duroquinol (PS I) was used as electron donor with methyl viologen as electron acceptor, and the degree of inhibition increased with higher enrichment levels. Introduction of exogenous plastoquinone with the additional lipid had little effect on whole-chain electron transport, but caused an increase in the 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)-sensitive rate of PS I electron transport. The inhibition was also detected by flash-induced oxidation-reduction changes of cytochrome f.  相似文献   

18.
Abstract. Myoblasts from 12-day chick embryos in cell culture transport the nonmetabolizable amino acid α-aminoisobutyric acid (AIB) two to three-fold more rapidly than multinucleated myotubes which form from them. This decrease in transport is due to a relative decrease in the number of transport sites per unit area of cell surface suggesting a compositional change in the plasma membrane during myogenesis. In studies reported here, AIB transport was monitored throughout myogenesis and correlated with other aspects of differentiation. During myogenesis the number of amino acid transport sites remains constant per myotube nucleus. As myogenesis proceeds, there is a marked increase in cellular protein and cell surface without a commensurate increase in amino acid transport sites. The net consequence of the surface area change is fewer amino acid transport sites per unit area of myotube membrane surface. The decrease in membrane transport sites for AIB per unit area of membrane is not a result of length of time in culture per se, medium depletion, or cell density, but is a result of differentiation, since blocking myoblast fusion by deprivation of calcium delays the decrease in AIB transport sites per unit cell surface area while reversal of the calcium deprivation block is accompanied by a rapid decrease in the number of AIB transport sites per unit cell surface area. Thus, the decrease in AIB transport sites is an aspect of differentiation which accompanies the marked elaboration of surface membrane during myogenesis.  相似文献   

19.
《The Journal of cell biology》1984,98(4):1434-1443
Intramembrane particles (IMPs) of the plasmalemma of mature, synapsing neurons are evenly distributed along the axon shaft. In contrast, IMPs of growing olfactory axons form density gradients: IMP density decreases with increasing distance from the perikarya, with a slope that depends upon IMP size (Small, R., and K. H. Pfenninger, 1984, J. Cell Biol., 98: 1422-1433). These IMP density gradients resemble Gaussian tails, but they are much more accurately described by the equations formulated for diffusion in a system with a moving boundary (a Stefan Problem), using constants that are dependent upon IMP size. The resulting model predicts a shallow, nearly linear IMP density profile at early stages of growth. Later, this profile becomes gradually transformed into a steep nonlinear gradient as axon elongation proceeds. This prediction is borne out by the experimental evidence. The diffusion coefficients calculated from this model range from 0.5 to 1.8 X 10(-7) cm2/s for IMPs between 14.8 and 3.6 nm, respectively. These diffusion coefficients are linearly dependent upon the inverse IMP diameter in accordance with the Stokes-Einstein relationship. The measured viscosity is approximately 7 centipoise. Our findings indicate (a) that most IMPs in growing axons reach distal locations by lateral diffusion in the plasma membrane, (b) that IMPs-- or complexes of integral membrane proteins--can diffuse at considerably higher rates than previously reported for iso-concentration systems, and (c) that the laws of diffusion determined for macroscopic systems are applicable to the submicroscopic membrane system.  相似文献   

20.
Ultrastructure and membrane permeability in cowpea seeds   总被引:2,自引:2,他引:0  
Abstract. The leakage of electrolytes and the localization of chloride within the cells of NaCl-imbibed seeds indicates the plasmalemma is quite permeable during the early stages of imbibition. However, lanthanum is not able to penetrate the plasmalemma, suggesting that the plasmalemma is not entirely porous. Freeze-fracture microscopy indicates that the plasmalemma is highly convoluted but reveals a fairly normal fracture plane. These observations suggest the membrane is a bilayer and leakiness may be more related to the degree of order within the bilayered membrane than to a primary restructuring and/or reorganization of the membrane components in the dry state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号