首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lacrimal gland mucins   总被引:6,自引:0,他引:6  
  相似文献   

2.
Antibodies against 10 different secretory proteins from the accessory sex glands of the male rat were used for immunohistochemical studies of salivary and lacrimal glands from intact and castrated rats, at the light- and electron-microscopic levels. In the parotid gland, secretory acinar cells showed immunoreactivity with antibodies against prostatic binding protein, cystatin-related peptide and acid phosphatase (isoenzyme pI 8.0; 5.6) typical of ventral prostate, and seminal vesicle secretion VI. Western blotting analysis indicated that immunoreactivity against prostatic binding protein was attributable to a subunit, presumably C3. Acid phosphatase pI 5.6 showed a molecular weight of 66 kDa, which is at variance with the prostatic form. Immunoreactivity for secretory transglutaminase, derived from the coagulating gland, was restricted to myoepithelial and stromal cells. In castrated animals, the immunoreactivity of acinar cells was reduced to the background level, whereas stromal transglutaminase immunoreactivity was unaltered. The distribution pattern of immunoreactivity for the proteins mentioned was almost identical in the lacrimal gland. Significant differences were however observed in the immunoreactivity of the inframandibular gland, where serous glandular cells were non-immunoreactive for seminal proteins, with the exception of acid phosphatase isoenzyme pI 8.0. Granules present in the convoluted granular ducts were immunoreactive particularly for acid phosphatase (isoenzyme pI 5.6)but much less for cystatin-related peptide; immunoreactivity was reduced after castration. The straight portion of the inframandibular duct system was immunoreactive for transglutaminase, but no influence of castration was visible. The distribution of immunoreactivity for seminal proteins present in the salivary and lacrimal glands and the pronounced androgen-dependence of their expression point to functional relationships of the respective proteins at both glandular sites.  相似文献   

3.
In the perinatal submandibular gland, the secretion granules of Type I cells contain protein C (89 KD) and those of Type III cells have Bl-immunoreactive proteins (Bl-IP, 23.5-27.5 KD). In this report we used immunocytochemistry at the light and electron microscopic levels to describe the developmental distribution and localization of protein D (175 KD), which is secreted by both Type I and Type III cells. At its first appearance in Type I cells at 18 days and in Type III cells at 19 days post conception, protein D immunoreactivity (D-IR) is associated with secretion granule membranes; this is more pronounced in Type I than in Type III cells. In early postnatal life the label remains membrane associated, but as Type III cells differentiate into seromucous acinar cells, the lower level of label present in these cells is found in the granule content. Label is found associated with the membrane in secretion granules of Type I cells as long as these cells are identifiable in acini, and subsequent to this similarly labeled cells are seen in intercalated ducts. In the sublingual gland (SLG), D-IR is membrane associated in secretion granules of serous demilune cells, and is present in the secretion granule content in mucous acinar cells. D-IR is also found in the lingual serous (von Ebner's) glands, lacrimal gland, and tracheal glands, primarily in the ducts, where it is localized in the content of secretion granules.  相似文献   

4.
5.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

6.
The Harderian gland is a poorly understood anterior ocular gland that occurs in most terrestrial vertebrates. Numerous extraorbital functions have been ascribed to the Harderian gland, principally based on its association with the nasolacrimal duct. Few studies have centered on archosaurs and the majority of those available focused solely on the Harderian gland of birds. Little is known about the lacrimal apparatus of the crocodilians. We examined the lacrimal apparatus of several specimens of Alligator mississippiensis anatomically, histologically, and histochemically and studied the embryogenesis of this system. The nasolacrimal duct possesses a distal secretory area, which is more convoluted than that of typical mammals or lepidosaurs. The alligator Harderian gland possesses a unique combination of characteristics found in lepidosaurs, birds, and mammals. Like that of both mammals and lepidosaurs, it is a large, tuboloacinar gland that appears to secrete both mucoprotein and lipids. However, the presence of blood vessels and immune cells is reminiscent of that of the avian Harderian gland. The immunogenesis of the alligator Harderian gland appears to be tied to the development of the vascular system. The presence of a distinct palpebral gland in the anterior aspect of the ventral eyelid is a feature unique to alligators. Based on position, this gland does not appear to be homologous to the anterior lacrimal gland of lepidosaurs. Lymphatic aggregations were also found in the palpebral gland. The presence of interstitial immune cells in the orbital glands of alligators suggests that the alligator lacrimal apparatus, like that of birds, may play a role in the head-associated lymphatic tissue system.  相似文献   

7.
This study described the anatomy, histology and the histochemical analysis of the eye tunics, the upper and lower eyelid, the third eyelid, the lacrimal gland and the superficial gland of the third eyelid in adult Sulawesi bear cuscus. The eyeball and the eyelids with the orbital glands were harvested immediately post-mortem. The eyeball in the Sulawesi bear cuscus had a sphere-like shape. The pupil was round, and the lens was a circular biconvex body. There was neither tapetum lucidum nor Harderian gland. Similarly, there were no eyelashes in the lower eyelid. The lymphoid follicles and the high endothelial venules (HEV) were found in the lymphoid region only in the third eyelid and in the connective tissue of the superficial gland of the third eyelid. The third eyelid in the bear cuscus resembled the letter “T.” The lacrimal gland and superficial gland of the third eyelid were multilobar tubuloacinar glands. The histological analysis and histochemical studies showed that the lacrimal gland in the Sulawesi bear cuscus produced a mucoserous secretion with predominantly serous cells. In contrast, the superficial gland of the third eyelid produced a serous secretion with a single acinus mucous in character.  相似文献   

8.
Immunoreactive surfactant protein-D (SP-D) was assessed in human fetal, newborn, and adult tissues. In the fetal lung, SP-D was detected on airway surfaces by 10 weeks' gestation, staining increasing in the distal airways, decreasing in the proximal conducting airways with advancing gestation. In lungs from near-term infants and adults, SP-D was detected in Type II cells, serous cells of tracheobronchial glands, and subsets of cells lining peripheral airways. Immunostaining was decreased or absent in areas of lungs of neonates after injury to Type II cells, infection, or hemorrhage and was decreased in collapsed or unseptated airways from older infants with bronchopulmonary dysplasia. SP-D was also detected in many organs at all ages. SP-D was readily detected in epithelial cells and luminal material in lacrimal glands, salivary glands, pancreas, bile ducts, renal tubules, esophageal muscle and glands, parietal cells of the stomach, crypts of Lieberkuhn, sebaceous and eccrine sweat glands, Von Ebner's glands, endocervical glands, seminal vesicles, adrenal cortex, myocardium, and anterior pituitary gland. SP-D is a widely distributed member of the "collectin" family of polypeptides secreted onto luminal surfaces by epithelial cells lining ducts of many organs, where it likely plays a role in innate host defense.  相似文献   

9.
The morphology and the ultrastructure of the male accessory glands and ejaculatory duct of Ceratitis capitata were investigated. There are two types of glands in the reproductive apparatus. The first is a pair of long, mesoderm-derived tubules with binucleate, microvillate secretory cells, which contain smooth endoplasmic reticulum and, in the sexually mature males, enlarged polymorphic mitochondria. The narrow lumen of the gland is filled with dense or sometimes granulated secretion, containing lipids. The second type consists of short ectoderm-derived glands, finger-like or claviform shaped. Despite the different shape of these glands, after a cycle of maturation, their epithelial cells share a large subcuticular cavity filled with electron-transparent secretion. The ejaculatory duct, lined by cuticle, has epithelial cells with a limited involvement in secretory activity. Electrophoretic analysis of accessory gland secretion reveals different protein profiles for long tubular and short glands with bands of 16 and 10 kDa in both types of glands. We demonstrate that a large amount of accessory gland secretion is depleted from the glands after 30 min of copulation.  相似文献   

10.
 The distribution of S-100 protein and its α- and β-subunits in bovine exocrine glands was studied by indirect immunohistochemistry. The entire spectrum of salivary glands, glands of the respiratory tract, intestinal glands, male and female genital glands, and skin glands was examined. S-100 and its β-subunit were identified in most serous secretory cells of mixed salivary glands, although secretory acini in some serous glands remained unreactive for these antigens. Mucous cells were constantly negative; mucoid cells were positive in the lacrimal and Harderian gland. The α-subunit of S-100 protein was identified in serous cells but the staining reaction was faint. Subunits of S-100 showed a characteristic distribution along the excretory duct systems of compound glands: S-100 and the β-subunit were present in intercalated duct epithelium, while striated duct epithelium stained for S100-α. Therefore, it is suggested that S100-α is related to resorption and secretion in striated ducts, while S100-β may govern acinar exocytosis and probably regulates proliferation and differentiation of glandular cells. Differing staining intensities for S-100 and its subunits in secretory cells of exocrine glands most probably indicate functional differences with regard to secretory activity and the cell cycle. Accepted: 11 February 1997  相似文献   

11.
The major lacrimal gland of rhesus monkeys is impalpable within the fatty connective tissue of the upper lateral quadrant of the orbit. Acini of the lacrimal glands are composed of both sparsely and heavily granulated cells that histochemically resemble serous acinar cells of the submandibular salivary gland. The cytoplasmic granules are strongly periodic acid-Schiff (PAS)-positive, and some are also stained by alcian blue for acidic mucosubstances. The lacrimal gland has a simple duct system of intralobular ducts and interlobular excretory ducts. Lymphocytes and plasma cells are common in the periductal stroma. Major lacrimal glands of rhesus monkeys are suitable for comparative and correlative studies of lacrimal and salivary diseases and radiation responses.  相似文献   

12.
Accessory gland secretions of male insects have many important functions including the formation of spermatophores. We used light and electron microscopy to investigate the structure of the accessory glands and posterior vasa deferentia of the carabid beetle Pterostichus nigrita to try to determine where spermatophore material is produced. Each accessory gland and posterior vas deferens had an outer layer of longitudinal muscle, beneath which was a layer of connective tissue and a thin band of circular muscle, all of which surrounded a layer of epithelial cells lining the lumen of the ducts. Based on the ultrastructure of the epithelial cells, and their secretory products, we identified two epithelial cell types in each region (distal and proximal) of the accessory glands and four types in the posterior vas deferens. Most secretory products, which stained positively for proteins and some mucins, were released into the lumen of the ducts by apocrine secretion. The accessory glands produced one type of secretory product whereas in posterior vasa deferentia, four types of secretory products were found layered in the lumen. Our results suggest that most of the structural material used to construct a spermatophore is produced by the cells of the posterior vasa deferentia.  相似文献   

13.
Sialomucin Complex (SMC; Muc4) is a heterodimeric glycoprotein consisting of two subunits, the mucin component ASGP-1 and the transmembrane subunit ASGP-2. Northern blot and immunoblot analyses demonstrated the presence of SMC/Muc4 in submaxillary, sublingual and parotid salivary glands of the rat. Immunocytochemical staining of SMC using monoclonal antisera raised against ASGP-2 and glycosylated ASGP-1 on paraffin-embedded sections of parotid, submaxillary and sublingual tissues was performed to examine the localization of the mucin in the major rat salivary glands. Histological and immunocytochemical staining of cell markers showed that the salivary glands consisted of varying numbers of serous and mucous acini which are drained by ducts. Parotid glands were composed almost entirely of serous acini, sublingual glands were mainly mucous in composition and a mixture of serous and mucous acini were present in submaxillary glands. Since immunoreactive (ir)-SMC was specifically localized to the serous cells, staining was most abundant in parotid glands, intermediate levels in submaxillary glands and least in sublingual glands. Ir-SMC in sublingual glands was localized to caps of cells around mucous acini, known as serous demilunes, which are also present in submaxillary glands. Immunocytochemical staining of SMC in human parotid glands was localized to epithelial cells of serous acini and ducts. However, the staining pattern of epithelial cells was heterogeneous, with ir-SMC present in some acinar and ductal epithelial cells but not in others. This report provides a map of normal ir-SMC/Muc4 distribution in parotid, submaxillary and sublingual glands which can be used for the study of SMC/Muc4 expression in salivary gland tumors.  相似文献   

14.
M Eichhorn 《Histochemistry》1988,88(3-6):475-479
The distribution of carbonic anhydrase (CA) was studied in the lacrimal gland of the cynomolgus monkey as well as in the lacrimal, infra-orbital and harderian glands of the rabbit. In the lacrimal gland of the cynomolgus monkey, a number of acini with positive staining were found; however, another group of acini did not stain. In the positively stained acinar cells, large amounts of reaction product were located in the cytoplasm, but only weak staining was observed in the membranes. In the endothelial cells of capillaries a strong staining reaction was only seen in those vessels which were adjacent to the acinar cells containing CA. In the lacrimal and infra-orbital glands of the rabbit, there was intense staining of the cell membranes in all acinar cells and weak staining of the cytoplasm in a few acinar cells. Stained capillaries were also found here, but these were not as numerous as in the lacrimal gland of the cynomolgus monkey. In the harderian gland of the rabbit, there was no staining in the white lobe. In the red lobe the acinar cells displayed distinct staining exclusively in the basolateral membranes. There was no staining of capillaries in the harderian gland. In none of the glands studied was there staining of the epithelial cells of the excretory ducts. The functional significance of these findings is discussed.  相似文献   

15.
The antigenic profile of 13 normal formalin-fixed, paraffin-embedded human main and accessory lacrimal glands, biopsied from patients aged 11 to 78 years, was studied using a panel of 27 polyclonal and monoclonal antibodies. Secretory cells of lacrimal acini reacted with antibodies to S-100 protein and simple epithelium-type cytokeratins CK 7, CK 8, CK 18, and CK 19. Their luminal membranes were labeled with antibodies to carcinoembryonic antigen, epithelial membrane antigen, and epithelial glycoproteins recognized by Ber-EP4. Myoepithelial cells were often immunopositive for S-100 protein, vimentin, glial fibrillary acidic protein (GFAP), and alpha-smooth muscle actin. More rarely, they reacted with antibodies recognizing CK 5, CK 13, and CK 14, which consistently labeled the basal cells of lacrimal ducts. Unlike myoepithelial cells, basal ductal cells were immunopositive for CK 7, CK 8, CK 18, and CK 19. In main excretory ducts, dendritic melanocyte-like cells co-expressing vimentin and S-100 protein intermingled with ductal epithelial cells. The luminal cells of lacrimal ducts basically paralleled secretory cells in their antigenic profile, although they lacked Ber-EP4 and were immunopositive for CK 4. Antibodies to neuron-specific enolase and synaptophysin reacted with nerve fibers among negatively reacting secretory acini. This antigenic profile closely parallels that of salivary glands and provides a basis for studies of lacrimal gland pathology.  相似文献   

16.
Summary To establish an immortalized lacrimal gland epithelial cell line, the orbital lacrimal glands of normal New Zealand White rabbits were multiply injected with an immortalizing amphotropic retroviral vector (LXSN16E6E7) containing the E6 and E7 genes of human papillomavirus type 16. Lacrimal glands were removed after 2 d and acinar epithelial cells were isolated and cultured on Matrigel-coated 60 mm2 plates containing DMEM-F12 supplemented with 5% Nu-serum V. Transformed cells were selected in G418 sulfate for 7 d and passaged. Morphology of the immortalized cells was similar to that described for normal acinar cells both in vivo and in vitro, with rough endoplasmic reticulum and secretory granules. These characteristics remained unchanged and the cells continued to exhibit typical polygonal epithelioid structure. The cells have been maintained in culture for 14 mo. and have gone through 58 passages without loss of proliferation or epithelial cell characteristics. Immunohistochemistry and Western blots showed positive reactivity to secretory component, transferrin, and transferrin receptor, which are typical proteins found in the lacrimal gland. Functional analysis by stimulation with a cholinergic agonist, carbachol (100 μM), resulted in a significant release of protein. This is the first report of an immortalized rabbit lacrimal epithelial cell. These cells will provide a valuable tool for the molecular analysis of lacrimal gland epithelial cell functions.  相似文献   

17.
We have previously demonstrated by immunohistochemistry the presence of secreted carbonic anhydrase (CA VI) in the acinar cells of the rat lacrimal glands. In this study we purified the sheep lacrimal gland CA VI to homogeneity and demonstrated by Western analysis that it has the same apparent subunit molecular weight (45 kD) as the enzyme isolated from saliva. RT-PCR analysis showed that CA VI mRNA from the lacrimal gland was identical to that of the parotid gland CA VI mRNA. An RIA specific for sheep CA VI showed the lacrimal gland tissue concentration of the enzyme to be 4.20 +/- 2.60 ng/mg protein, or about 1/7000 of the level found in the parotid gland. Immunohistochemistry (IHC) and in situ hybridization (ISH) showed that lacrimal acinar cells expressed both immunoreactivity and mRNA for CA VI. Moreover, CA VI immunoreactivity was occasionally observed in the lumen of the ducts. Unlike the parotid gland, in which all acinar cells expressed CA VI immunoreactivity and mRNA, only some of the acinar cells of the lacrimal gland showed expression. These results indicate that the lacrimal gland synthesizes and secretes a very small amount of salivary CA VI. In tear fluid, CA VI is presumed to have a role in the maintenance of acid/base balance on the surface of the eye, akin to its role in the oral cavity.  相似文献   

18.
19.
The parotid and the principal and accessory submandibular glands of the little brown bat. Myotis lucifugus (Vespertilionidae), were examined using light microscopy and staining methods for mucosubstances. The parotid gland is a compound tubuloacinar seromucous gland. Parotid gland secretory cells contain both neutral and nonsulfated acidic mucosubstances. The principal and accessory submandibular glands are compound tubuloacinar mucus-secreting glands. They contain somewhat atypical mucus-secreting demilunar cells that often appear to be interspersed between mucous tubule cells. The mucous tubule cells in both the principal and accessory submandibular glands contain sulfonmucins. Demilunar cells of the principal submandibular gland contain moderate amounts of nonsulfated acidic mucosubstances, but the corresponding cells of the accessory submandibular gland contain considerable neutral mucosubstance with very little acid mucosubstance. Intercalated ducts composed of cuboidal or low columnar epithelial cells are present in all three glands. Striated ducts in all glands are composed of columnar cells whose apices bulge into the ductal lumina. Excretory ducts are composed of simple columnar epithelium, with occasional basal cells that suggest a possible pseudostratified nature. The cells of the excretory ducts also have bulging apices. All duct types contain apical cytoplasmic secretory material that is a periodic acid-Schiff positive, neutral mucosubstance. Ductal apical secretory material is more evident in intercalated and striated ducts than in excretory ducts.  相似文献   

20.
In addition to circulation, where it transfers phospholipids between lipoprotein particles, phospholipid transfer protein (PLTP) was also identified as a component of normal tear fluid. The purpose of this study was to clarify the secretion route of tear fluid PLTP and elucidate possible interactions between PLTP and other tear fluid proteins. Human lacrimal gland samples were stained with monoclonal antibodies against PLTP. Heparin-Sepharose (H-S) affinity chromatography was used for specific PLTP binding, and coeluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. Immunoprecipitation assay and blotting with specific antibodies helped to identify and characterize PLTP-mucin interaction in tear fluid. Human tear fluid PLTP is secreted from the lacrimal gland. MALDI-TOF analysis of H-S fractions identified several candidate proteins, but protein-protein interaction assays revealed only ocular mucins as PLTP interaction partners. We suggest a dual role for PLTP in human tear fluid: (1) to scavenge lipophilic substances from ocular mucins and (2) to maintain the stability of the anterior tear lipid film. PLTP may also play a role in the development of ocular surface disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号