首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The majority of cloned animals derived by nuclear transfer from somatic cell nuclei develop to the blastocyst stage but die after implantation. Mouse embryos that lack an Oct4 gene, which plays an essential role in control of developmental pluripotency, develop to the blastocyst stage and also die after implantation, because they lack pluripotent embryonic cells. Based on this similarity, we posited that cloned embryos derived from differentiated cell nuclei fail to establish a population of truly pluripotent embryonic cells because of faulty reactivation of key embryonic genes such as Oct4. To explore this hypothesis, we used an in silico approach to identify a set of Oct4-related genes whose developmental expression pattern is similar to that of Oct4. When expression of Oct4 and 10 Oct4-related genes was analyzed in individual cumulus cell-derived cloned blastocysts, only 62% correctly expressed all tested genes. In contrast to this incomplete reactivation of Oct4-related genes in somatic clones, ES cell-derived cloned blastocysts and normal control embryos expressed these genes normally. Notably, the contrast between expression patterns of the Oct4-related genes correlated with efficiency of embryonic development of somatic and ES cell-derived cloned blastocysts to term. These observations suggest that failure to reactivate the full spectrum of these Oct4-related genes may contribute to embryonic lethality in somatic-cell clones.  相似文献   

3.
4.
5.
6.
Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation   总被引:19,自引:0,他引:19  
  相似文献   

7.
Placental abnormalities and failed implantation are characterized phenotypes that occur in many species as a result of somatic cell cloning. This study examines a number of genes, critical for early placental development and reports aberrant expression patterns in a number of cloned bovine blastocysts, thus implicating a role of these genes in failed implantation. Messenger RNA (mRNA) expression of eight genes critical for early placental and preimplantation development including Acrogranin, Cdx2, Eomes, ErbB3, ERR2, Hand1, MRJ, and Rex1 were analyzed in single, in vivo, in vitro, and cloned bovine blastocysts (produced by hand-made cloning (HMC) and serial hand-made cloning (SHMC)) following complementary DNA (cDNA) amplification with a SMART cDNA synthesis kit. Aberrant expression of Acrogranin, Cdx2, and ERR2 was detected in a number of blastocysts produced by SHMC. Other genes, Eomes and Hand1, were not detectable in, in vivo bovine blastocysts, suggesting a differential expression pattern between bovine and murine embryos. A number of control marker genes including Oct4, IFN-tau, and PolyA were expressed in all single blastocysts analyzed. This is the first study to report that failure of implantation may be due to aberrant expression of genes in the preimplantation cloned embryo, which are crucial for the early regulation and differentiation of the placenta.  相似文献   

8.
The trophectoderm (TE) and inner cell mass (ICM) are committed and marked by reciprocal expression of Cdx2 and Oct4 in mouse late blastocysts. We find that the TE is not committed at equivalent stages in cattle, and that bovine Cdx2 is required later, for TE maintenance, but does not repress Oct4 expression. A mouse Oct4 (mOct4) reporter, repressed in mouse TE, remained active in the cattle TE; bovine Oct4 constructs were not repressed in the mouse TE. mOct4 has acquired Tcfap2 binding sites mediating Cdx2-independent repression-cattle, humans, and rabbits do not contain these sites and maintain high Oct4 levels in the TE. Our data suggest that the regulatory circuitry determining ICM/TE identity has been rewired in mice, to allow rapid TE differentiation and early blastocyst implantation. These findings thus emphasize ways in which mice may not be representative of the earliest stages of mammalian development and stem cell biology.  相似文献   

9.
10.
This study was designed to determine the fate of the blastomeres in two-cell porcine parthenotes that display uneven size (larger vs. smaller) or cytoplasmic brightness (darker vs. brighter) during development to the blastocyst stage. For the non-invasive tracing of cell lineage, lipophilic fluorescence dye DiI (red) and DiD (blue) was randomly microinjected into each of two different blastomeres in each embryo. In blastocysts derived from the two-cell parthenotes with unevenly-sized blastomeres, no biased contribution was found in the progeny of either blastomere. However, in the blastocysts derived from the two-cell parthenote having different cytoplasmic brightnesses, the progeny of darker (more lipid-rich cytoplasm) blastomeres were more than two-fold more likely to form the embryonic part (43.6%; 17/39) than they were to form the abembryonic part (17.9%; 7/39), while the contribution of brighter blastomeres (less lipid) was just the opposite. The expressions of four marker genes involved in lineage allocation (Cdx2, Tead4, Oct4 and Carm1) were also analyzed in darker and brighter blastomeres of two-cell parthenotes using quantitative RT-PCR. The expression of Carm1 that encodes arginine methyltransferase 1 and that promotes inner cell mass (ICM) differentiation was significantly higher (P<0.05) in darker blastomeres. The ICM marker Oct4 also tended to be more highly expressed in the darker blastomeres, while Cdx2 and the TE marker Tead4 showed comparably higher expressions in the brighter blastomeres. However, in all cases, the marginal differences in the expression levels of Oct4, Cdx2 and Tead4 were not statistically significant (P>0.05). Our findings indicate that expression of genes related to early differentiation, especially Carm1, are partially associated with lipid droplet distribution in the two-cell porcine parthenote and may lead to biased embryonal axis formation.  相似文献   

11.
12.
Jang G  Bhuiyan MM  Jeon HY  Ko KH  Park HJ  Kim MK  Kim JJ  Kang SK  Lee BC  Hwang WS 《Theriogenology》2006,65(9):1800-1812
In an attempt to produce transgenic cloned cows secreting alpha 1-antitrypsin (alpha1-AT) protein into milk, bovine cumulus cells were transfected with a plasmid containing an alpha1-AT gene and green fluorescent protein (GFP) reporter gene using Fugene 6 as a lipid carrier. The GFP-expressing cells were selected and transferred into enucleated bovine oocytes. Couplets were fused, chemically activated and cultured. Developmental competence was monitored and the number of inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts were counted after differential staining. The percentage of blastocysts was lower (P < 0.05) in transgenic cloned embryos compared to non-transgenic cloned embryos (23% versus 35%). No difference in the numbers of ICM and TE cells between the two groups of embryos was observed. One or two GFP-expressing blastocysts were transferred into the uterus of each recipient cow. Out of 49 recipient cows, three pregnancies were detected by non-return estrus and rectal palpation. However, the pregnancies failed to maintain to term; two fetuses were aborted at Day 60 and 150, respectively, and one fetus at Day 240. The genomic DNA from the aborted fetus was amplified by polymerase chain reaction (PCR) to investigate integration of the transgene in the fetus. The expected PCR product was sequenced and was identical to the sequence of alpha1-AT transgene. In conclusion, the present study demonstrated that developmental competence of cloned embryos derived from transgenic donor cells was lower than embryos derived from non-transfected donor cells. Although we failed to obtain a viable transgenic cloned calf, integration of alpha1-AT gene into the fetus presents the possibility of producing transgenic cloned cows by somatic cell nuclear transfer.  相似文献   

13.
14.
The evaluation of embryo morphology, widely used for selecting mammalian embryos before transfer, is not an adequate standard for selecting nuclear-transferred (NT) embryos. To search for markers useful for predicting the potential of NT embryos to develop into young, we examined the relation between the morphology of embryos with different developmental potential and gene expression of Oct 4, Nanog, Stat3, FGF4, Stella, and Sox2. In the present study, we examined pronuclear-exchanged blastocysts and morula blastomere, embryonic stem (ES) cell, and cumulus cell NT blastocysts, and in vivo-developed and in vitro-developed blastocysts. Based on the small variations in the gene expression levels among the in vivo-developed blastocysts, and the significant differences in gene expression between in vivo-developed (high developmental potential), and ES cell and cumulus cell NT blastocysts (low developmental potential), down-regulation of Sox2 and Oct4 genes is considered to be a candidate marker for the low potential of NT embryos to develop into young.  相似文献   

15.
Lin J  Shi L  Zhang M  Yang H  Qin Y  Zhang J  Gong D  Zhang X  Li D  Li J 《Cell Stem Cell》2011,8(4):371-375
The low success rate of somatic nuclear transfer (NT) is hypothesized to be mainly due to functional defects in the trophoblast cell lineage rather than the inner cell mass (ICM); this hypothesis, however, remains to be tested directly. Here we separated the ICMs from cloned blastocysts and aggregated the cloned ICM with two fertilization-derived (FD) tetraploid (4N) embryos. We found that the full-term development of cloned ICMs was dramatically improved after the trophoblast cells in the cloned blastocysts were replaced by cells from tetraploid embryos, thus providing direct evidence that defects in trophoblast cell lineage underlie the low success rate of somatic NT.  相似文献   

16.
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.  相似文献   

17.
Potential applications of somatic cell nuclear transfer to agriculture and medicine are currently constrained by low efficiency and high rates of embryonic, fetal, and neonatal loss. Nuclear transfer efficiency in cattle was compared between three donor-cell treatments from a single animal, between four donor-cell treatments in sequential stages of differentiation from a single cell lineage and genotype, and between the same cell type in two donors. Cumulus and granulosa donor cells resulted in a greater proportion of viable day-7 embryos than ear-skin cells; pregnancy rate and losses were not different among treatments. The least differentiated cell type in the follicular cell lineage, preantral follicle cells, resulted in fewer cloned blastocysts (11%) than cumulus (30%), granulosa (23%), and luteal (25%) donor cells. Cloned blastocysts that did develop from preantral follicle cells (75%) were more likely to progress through implantation into later stages of pregnancy than cloned blastocysts from cumulus (10%), granulosa (9%), and luteal (11%) donor cells (p < 0.05). Day-7 embryo development from granulosa cells was similar between two donors (19 vs. 24%) and proved to be a poor indicator of further development as day-30 pregnancy rates varied threefold between donors (48 vs. 15%, p < 0.05). Results reported here emphasize the crucial role of the nuclear donor cell in the outcome of the nuclear-transfer process.  相似文献   

18.
19.
In this study, we selected gelatin as ECM (extracellular matrix) to support differentiation of mES (mouse embryonic stem) cells into TE (trophectoderm), as gelatin was less expensive and widely used. We found that 0.2% and 1.5% gelatin were the suitable concentrations to induce TE differentiation by means of detecting Cdx2 expression using real-time PCR. Moreover, about 15% cells were positive for Cdx2 staining after 6 days differentiation. We discovered that the expressions of specific markers for TE, such as Cdx2, Eomes, Hand1 and Esx1 were prominently increased after gelatin induction. Meanwhile, the expression of Oct4 was significantly decreased. We also found that inhibition of the BMP (bone morphogenetic protein) signalling by Noggin could promote mES cells differentiation into TE, whereas inhibition of the Wnt signalling by Dkk1 had the contrary effect. This could be used as a tool to study the differentiation and function of early trophoblasts as well as further elucidating the molecular mechanism during abnormal placental development.  相似文献   

20.
In this study, we sought to determine the extent to which mitogenic growth factors affect the survival and development of cloned mouse embryos in vitro. Cloned embryos derived by intracytoplasmic nuclear injection (ICNI) of cumulus cell nuclei into enucleated oocytes were incubated in culture media supplemented with EGF and/or TGF-alpha for 4 days. Compared to control, treatment with either growth factor significantly increased the blastocyst formation rate, the total number of cells per blastocyst, the cell ratio of the inner cell mass and the trophectoderm (ICM:TE ratio), and EGF-R protein expression in cloned embryos. In most instances these effects were enhanced in cloned embryos when EGF and TGF-alpha were combined. Although fewer blastocysts developed from cloned than from fertilized one-cell stage embryos, growth factor treatment appeared to have the greatest effect on cloned embryos. These results demonstrate that mitogenic growth factors significantly enhance survival and promote the preimplantation development of cloned mouse embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号