首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Seminars in Virology》1993,4(6):381-387
Tomato spotted with virus (TSWV) is deviant from most other plant viruses in having (mainly) a negative-strand RNA genome and a lipid envelope, and in being propagatively transmitted by thrips. Due to increasing resistance of thrips to insecticides as well as to a relative shortage of natural resistance genes suitable for breeding, genetically engineered forms of resistance to TSWV infections are urgently needed. This review will discuss the recently approved strategy of N gene-mediated protection, which has been shown to hold even against thrips-mediated virus inoculation, as well as a number of potential strategies that are likely to be developed in the near future.  相似文献   

3.
The glycoprotein precursor (G1/G2) gene of tomato spotted wilt virus (TSWV) was expressed in BHK cells using the Semliki Forest virus expression system. The results reveal that in this cell system, the precursor is efficiently cleaved and the resulting G1 and G2 glycoproteins are transported from the endoplasmic reticulum (ER) to the Golgi complex, where they are retained, a process that could be blocked by tunicamycin. Expression of G2 alone resulted in transport to and retention in the Golgi complex, albeit less efficient, suggesting that G2 contains a Golgi retention signal. G1 alone was retained in the ER, irrespective of whether it contained the precursor's signal sequence or its own N-terminal hydrophobic sequence. Coexpression of G1 and G2 from separate gene constructs resulted in rescue of efficient G1 transport, as the proteins coaccumulated in the Golgi complex, indicating that their interaction is essential for proper targeting to this organelle. The results demonstrate that transport and targeting of the plant TSWV glycoproteins in mammalian BHK cells are strikingly similar to those of animal-infecting bunyavirus glycoproteins in mammalian cells. The observations are likely to reflect the dual tropism of TSWV, which replicates both in its plant host and in its animal (thrips) vector.  相似文献   

4.
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.  相似文献   

5.
Tomato spotted wilt virus (TSWV) replicates in both its plant hosts and its thrips vectors. Replication of TSWV within thrips suggests the potential for pathological effects that could affect the fitness of its vectors directly, whereas infection of the plant may alter its suitability as a host for thrips development. This study was undertaken to examine the influence of TSWV isolate, host plant, and temperature on potential direct and host-mediated effects of virus infection of the thrips and the plant on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), an important vector of TSWV. Neonate F. occidentalis were reared to adult eclosion on excised foliage of Datura stramonium (L.) (Solanaceae) or Emilia sonchifolia (L.) (Compositae) infected with either the CFL or RG2 isolate of TSWV, or not infected. Effects of the TSWV isolates and host plants on thrips were measured at 18.3, 23.9, and 29.4 °C. Results demonstrate significantly improved survival and a small but significant decrease in development time of F. occidentalis on TSWV-infected plants. These effects resulted from the combined influence of the direct effects of the virus on infected thrips and plant-mediated effects resulting from virus infection of the thrips’ host plant. Our results extend previous findings and help to explain inconsistencies among previously published reports by demonstrating that the manifestation and magnitude of effects of TSWV on F. occidentalis are dependent on host plant, virus isolate, and temperature.  相似文献   

6.
Although the mosquito midgut is the primary site of bloodmeal storage and the first line of defence against pathogenic infection, little is known about its proteic composition at a time when an increasing number of proteins are reported to impair viral infection. Aedes albopictus Skuse (Diptera: Culicidae) is an important vector of the dengue virus. We compared 2-dimensional protein profiles of the adult midgut in this species, taking into account bloodmeal status. The comparison of profiles from sugar-fed and blood-fed females showed that a considerable number of proteins were present in both midguts. In addition, one set of proteins was present only after sugar intake and another set only after blood intake. The comparison of profiles of blood-fed midguts and dengue virus-2 infected blood-fed midguts revealed that at least six proteins were present only in the infected midguts. These results are discussed in the context of the identification of midgut proteins involved in the dengue virus infection process.  相似文献   

7.
The western flower thrips (Frankliniella occidentalis) is a polyphagous herbivore that causes serious damage to many agricultural plants. In addition to causing feeding damage, it is also a vector insect that transmits tospoviruses such as Tomato spotted wilt virus (TSWV). We previously reported that thrips feeding on plants induces a jasmonate (JA)-regulated plant defense, which negatively affects both the performance and preference (i.e. host plant attractiveness) of the thrips. The antagonistic interaction between a JA-regulated plant defense and a salicylic acid (SA)-regulated plant defense is well known. Here we report that TSWV infection allows thrips to feed heavily and multiply on Arabidopsis plants. TSWV infection elevated SA contents and induced SA-regulated gene expression in the plants. On the other hand, TSWV infection decreased the level of JA-regulated gene expression induced by thrips feeding. Importantly, we also demonstrated that thrips significantly preferred TSWV-infected plants to uninfected plants. In JA-insensitive coi1-1 mutants, however, thrips did not show a preference for TSWV-infected plants. In addition, SA application to wild-type plants increased their attractiveness to thrips. Our results suggest the following mechanism: TSWV infection suppresses the anti-herbivore response in plants and attracts its vector, thrips, to virus-infected plants by exploiting the antagonistic SA-JA plant defense systems.  相似文献   

8.
Tomato Spotted Wilt Virus Particle Morphogenesis in Plant Cells   总被引:5,自引:1,他引:4       下载免费PDF全文
A model for the maturation of tomato spotted wilt virus (TSWV) particles is proposed, mainly based on results with a protoplast infection system, in which the chronology of different maturation events could be determined. By using specific monoclonal and polyclonal antisera in immunofluorescence and electron microscopy, the site of TSWV particle morphogenesis was determined to be the Golgi system. The viral glycoproteins G1 and G2 accumulate in the Golgi prior to a process of wrapping, by which the viral nucleocapsids obtain a double membrane. In a later stage of the maturation, these doubly enveloped particles fuse to each other and to the endoplasmic reticulum to form singly enveloped particles clustered in membranes. Similarities and differences between the maturation of animal-infecting (bunya)viruses and plant-infecting tospoviruses are discussed.  相似文献   

9.
The effects of different isolates of the tomato spotted wilt tospovirus (TSWV), host plants, and temperatures on Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), the most important vector of TSWV in North Carolina, were measured in the laboratory. Thrips were reared at either 18.3, 23.9, or 29.4 °C until adult eclosion on excised leaves of Datura stramonium L. or Emilia sonchifolia (L.). Plants were either infected with the TSWV isolates CFL or RG2, or left uninfected (control). The results revealed a positive relationship between larval survival and temperature, regardless of host plant or TSWV isolate. Both survival to adult and percentage transmission of TSWV by F. fusca were significantly affected by the interaction between host plant and TSWV isolate. The consequence of this interaction was that the cohort‐based percentage transmission from infected E. sonchifolia plants for CFL was 1.3‐fold greater than that of RG2, whereas the percentage transmission from infected D. stramonium plants for RG2 was twice that of CFL. Both host plant and TSWV isolates showed significant effects on thrips development time to adult and head capsule width of adult thrips, as well as on the incidence of thrips infection with TSWV. The infection status of these thrips was determined by ELISA for the NSs viral protein. Infected thrips reared on infected host foliage took longer to develop to adult and were smaller than non‐infected thrips which had also been reared on infected host foliage, demonstrating a direct effect of the TSWV on thrips. However, non‐infected thrips reared on non‐infected leaves took longer to develop than non‐infected thrips reared on infected leaves, suggesting an effect of the plant tissue on thrips. In addition, adult thrips reared on TSWV‐infected D. stramonium at 29.4 °C developed smaller head capsules than thrips developing on infected foliage at lower temperatures and on non‐infected leaves of D. stramonium or E. sonchifolia. Both TSWV isolates and host plants differentially affected females more than males. In conclusion, both the infection of thrips by TSWV and TSWV‐mediated changes in host plant quality were found to have significant biological effects on F. fusca.  相似文献   

10.
11.
Phytoviruses including tospoviruses are known to affect the behavior and fitness of their vectors both positively and negatively. In this study, we investigated the effects of Tomato spotted wilt virus (TSWV) (family Bunyaviridae, genus Tospovirus) infection on the fitness and feeding ability of tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) using peanut, Arachis hypogaea L. (Fabaceae), as a host. Potentially viruliferous F. fusca laid more eggs than non‐viruliferous F. fusca. In contrast, fewer potentially viruliferous F. fusca developed into adults and required a longer developmental time than non‐viruliferous F. fusca, indicating a direct negative effect of the virus on thrips fitness. In addition, no‐choice feeding tests indicated that non‐viruliferous F. fusca fed more rapidly than potentially viruliferous F. fusca. Typically, phytovirus infections are known to enhance the availability of vital nutrients such as free amino acids in infected host plants and to affect other important physiological processes negatively. Free amino acids are known to play a vital role in egg production and development. Further investigations in this study revealed that leaflets of infected plants had ca. 15 times more free amino acids than non‐infected leaflets. TSWV‐infected leaflets were used to rear potentially viruliferous thrips. Higher amino acid levels in TSWV‐infected leaflets than in non‐infected leaflets could have contributed to increased oviposition by potentially viruliferous F. fusca compared to non‐viruliferous F. fusca. Taken together, these results suggest that increased concentrations of free amino acids in TSWV‐infected plants might serve as an incentive for thrips feeding on otherwise unsuitable hosts, thereby facilitating TSWV acquisition and transmission.  相似文献   

12.
Patterns of spread of Tomato spotted wilt virus (TSWV) were examined in lettuce and pepper plantings into which thrips vectors spread the virus from external virus sources. These plantings were: 1) seven separate field trials into which TSWV ‘infector’ plants of tomato were introduced alongside or near to plantings of lettuce or pepper, and 2) three commercial lettuce plantings into which spread from nearby external infection sources was occurring naturally. The vector thrips species were Frankliniella occidentalis, F. schnitzel and Thrips tabaci, at least two of which were always present. Spatial data for plants with TSWV infection collected at different stages in the growing period were assessed by plotting gradients of infection, and using Spatial Analysis by Distance IndicEs (SADIE) and maps of spatial pattern. Despite the persistent nature of TSWV transmission by thrips vectors, in both lettuce and pepper plantings there was a steep decline in TSWV incidence with distance from external infection sources that were alongside them. The extent of clustering increased over time and was greatest closest to the source. The relationship between percentage infection and assessment date suggested that spread was predominantly monocyclic with only limited polycyclic spread. Development of isolated clusters of infected plants distant from TSWV sources within both crops was consistent with only limited polycyclic spread. Spread to lettuce was greater downwind than upwind of virus source, with magnitude and proximity of source determining the amount of spread. When 15 m wide fallow or non-host (cabbage) barriers separated TSWV sources from lettuce plantings, spread was slower and there was much less clustering with the latter. In commercial lettuce plantings, spread was favoured by TSWV movement within successive side-by-side plantings. The spatial data from the diverse scenarios examined enabled recommendations to be made over ‘safe’ planting distances between external infection sources of different magnitudes and susceptible crops that were short-lived (e.g. lettuce) or long-lived (e.g. pepper). They also helped validate the inclusion of isolation and ‘safe’ planting distances, planting upwind, prompt removal of virus sources, avoidance of side-by-side plantings, and deploying intervening non-host barrier crops as control measures within an integrated disease management strategy for TSWV in field vegetable crops.  相似文献   

13.
The accumulation and transmission of tomato spotted wilt virus (TSWV) was examined in second instar larvae and adults of two thrips genera, Frankliniella and Thrips. The species tested were F. occidentalis (Pergande), F. intonsa (Trybom), T. tabaciLindeman, T. setosus Moulton, T. palmi Karny and T. hawaiiensis (Morgan). In a standard petunia leaf disc assay, the efficiencies of TSWV transmission by two species of Frankliniella were higher than those of any Thrips species in the adult stage. A triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) showed that large amounts of the TSWV-nucleocapsid (N) protein were present in the ELISA-positive larvae of each species, with the exception of T. palmi. The ELISA titre of and the proportion of virus-infected individuals of the two Frankliniella species increased or did not significantly change from the larval to the adult stages, whereas those of the four Thrips species decreased significantly. These results show that the specificity of virus transmission by adult thrips is probably affected by the amount of viral N protein accumulation in the adults and that the accumulation pattern from the larval to the adult stages is in between the two genera tested in the present study.  相似文献   

14.
The entry of enveloped viruses into its host cells is a crucial step for the propagation of viral infection. The envelope glycoprotein complex controls viral tropism and promotes the membrane fusion process. The surface glycoproteins of enveloped viruses are synthesized as inactive precursors and sorted through the constitutive secretory pathway of the infected cells. To be infectious, most of the viruses require viral envelope glycoprotein maturation by host cell endoproteases. In spite of the strong variability of primary sequences observed within different viral envelope glycoproteins, the endoproteolytical cleavage occurs mainly in a highly conserved domain at the carboxy terminus of the basic consensus sequence (Arg-X-Lys/Arg-Arg downward arrow). The same consensus sequence is recognized by the kexin/subtilisin-like serine proteinases (so called convertases) in many cellular substrates such as prohormones, proprotein of receptors, plasma proteins, growth factors and bacterial toxins. Therefore, several groups of investigators have evaluated the implication of convertases in viral envelope glycoprotein cleavage. Using the vaccinia virus overexpression system, furin was first shown to mediate the proteolytic maturation of both human immunodeficiency virus (HIV-1) and influenza virus envelope glycoproteins. In vitro studies demonstrated that purified convertases directly and specifically cleave viral envelope glycoproteins. Although these studies suggested the participation of several enzymes belonging to the convertases family, recent data suggest that other protease families may also participate in the HIV envelope glycoprotein processing. Their role in the physiological maturation process is still hypothetical and the molecular mechanism of the cleavage is not well documented. Crystallization of the hemagglutinin precursor (HA0) of influenza virus allowed further understanding of the molecular interaction between viral precursors and the cellular endoproteases. Furthermore, relationships between differential pathogenicity of influenza strains and their susceptibility to cleavage are molecularly funded. Here we review the most recent data and recent insights demonstrating the crucial role played by this activation step in virus infectivity. We discuss the cellular endoproteases that are implicated in HIV gp160 endoproteolytical maturation into gp120 and gp41.  相似文献   

15.
The mosquito Culex pipiens pipiens is a documented vector of West Nile virus (WNV, Flaviviridae, Flavivirus). Our laboratory colony of C. p. pipiens, however, was repeatedly refractory to experimental transmission of WNV. Our goal was to identify if a cellular process was inhibiting virus infection of the midgut. We examined midguts of mosquitoes fed control and WNV-infected blood meals. Three days after feeding, epithelial cells from abdominal midguts of mosquitoes fed on WNV fluoresced under an FITC filter following Acridine Orange staining, indicating apoptosis in this region. Epithelial cells from experimental samples examined by TEM exhibited ultrastructural changes consistent with apoptosis, including shrinkage and detachment from neighbors, heterochromatin condensation, nuclear degranulation, and engulfment of apoptotic bodies by adjacent cells. Virions were present in cytoplasm and within cytoplasmic vacuoles of apoptotic cells. No apoptosis was detected by TEM in control samples. In parallel, we used Vero cell plaque assays to quantify infection after 7 and 10 day extrinsic incubation periods and found that none of the mosquitoes (0/55 and 0/10) which imbibed infective blood were infected. We propose that programmed cell death limits the number of WNV-infected epithelial cells and inhibits disseminated viral infections from the mosquito midgut.  相似文献   

16.
The effect of tomato spotted wilt virus (TSWV) on Frankliniella occidentalis Pergande (Thysanoptera; Thripidae) following a 6-hour acquisition access period on infected plants was investigated. No statistically significant differences were observed among viruliferous, non-viruliferous and control thrips with respect to developmental time, reproduction rate and survival. Thrips larvae, exposed or non-exposed to TSWV, developed from egg to adult in 13.1 and 13.2 days, respectively. Exposed females produced an average of 28.3 larvae whereas control thrips produced 22.3 larvae and longevity was 13.4 and 12.5 days, respectively. None of these values were significantly different. Population reproductive statistics, net reproductive rate (R 0), mean generation time (T) and intrinsic rate of increase (r m) were calculated from the life fertility tables. R 0 and r m were higher for viruliferous thrips as compared to non-viruliferous and non-exposed thrips. Virus transmission studies revealed that viruliferous thrips were able to transmit virus until death and that TSWV was not transovarially transmitted.  相似文献   

17.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5°C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

18.
In this study we analysed the ability of individual thrips to transmit Tomato spotted wilt virus (TSWV) in a population of Frankliniella occidentalis over their lifespan as adults (about 10 days). In three experiments a total of 636 thrips were individually tested for their transmission capacity through leaf disc assays using four inoculation access periods (IAPs). Almost half of the transmitting thrips maintained the capacity to infect leaf discs in each of the four IAPs, confirming the persistent propagative nature of the transmission modality. Nevertheless, a relevant number of thrips (9.25% of transmitter thrips) was able to transmit in the early phases of their adult life (for the first two IAPs), but did not transmit the virus for the remainder of their lifetime. We compared the virus titer of these individuals at the end of the fourth IAP with that of individuals that maintained transmission ability in the four IAPs and showed a statistically significant difference. This difference could be evidence for recovery from TSWV infection in individual thrips.  相似文献   

19.
We have shown that enzymatic removal of N-linked glycans from human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoproteins gp160 and gp120 produced in BHK-21 cells did not significantly reduce their ability to bind to CD4, the cellular receptor for the virus. Because recombinant proteins may behave differently from proteins present on virions, we investigated whether such viral envelope glycoproteins either in a purified form or present on viral particles could be deglycosylated by treatment with an endoglycosidase F-N-glycanase mixture which cleaves all accessible glycan moieties. Endoglycosidase analysis of the carbohydrate composition of purified viral gp120 (vgp120) indicated a glycosylation pattern similar to that for recombinant gp120 (rgp120), and treatment with endoglycosidase F-N-glycanase resulted in comparable molecular weight (MW) reduction for both molecules. Similarly, after immunoblotting of the deglycosylated viral preparation, the characteristic 160- and 120-kilodalton (kDa) bands were replaced by 90- and 60-kDa bands, respectively. The apparent MW of gp41 shifted to 35 kDa. These results are consistent with complete deglycosylation. The immunoreactive conformation of envelope glycoproteins remained unaltered after deglycosylation: they were recognized to the same extent by specific human polyclonal or mouse monoclonal antibodies, and no proteolysis of viral proteins occurred during enzymatic treatment. Deglycosylation of vgp120 resulted in a less than 10-fold reduction of the ability to bind to CD4, presented either in a soluble form or at the cell membrane. In addition, deglycosylation significantly reduced, but did not abolish, HIV-1 binding to and infectivity of CD4+ cells as determined, respectively, by an indirect immunofluorescence assay and a quantitative dose-response infection assay. Taken together, these results indicate that removal of glycans present on mature envelope glycoproteins of HIV-1 diminishes but does not abolish either virus binding to CD4 or its capacity to infect CD4+ cells.  相似文献   

20.
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号