首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kerkeb L  Krämer U 《Plant physiology》2003,131(2):716-724
Exposure of the hyperaccumulator Alyssum lesbiacum to nickel (Ni) is known to result in a dose-dependent increase in xylem sap concentrations of Ni and the chelator free histidine (His). Addition of equimolar concentrations of exogenous L-His to an Ni-amended hydroponic rooting medium enhances Ni flux into the xylem in the nonaccumulator Alyssum montanum, and, as reported here, in Brassica juncea L. cv Vitasso. In B. juncea, reducing the entry of L-His into the root by supplying D-His instead of L-His, or L-His in the presence of a 10-fold excess of L-alanine, did not affect root Ni uptake, but reduced Ni release into the xylem. Compared with B. juncea, root His concentrations were constitutively about 4.4-fold higher in A. lesbiacum, and did not increase within 9 h of exposure to Ni. Cycloheximide did not affect root His or Ni concentrations, but strongly decreased the release of His and Ni from the root into the xylem of A. lesbiacum, whereas xylem sap concentrations of Ca and Mg remained unaffected. Near-quantitative chelation of Ni with nitrilotriacetate in the rooting medium did not enhance Ni flux into the xylem of A. lesbiacum and B. juncea, suggesting the absence of a significant apoplastic pathway for Ni entry into the xylem. The data suggest that in B. juncea roots, Ni(2+) uptake is independent of simultaneous uptake of His. In both species, enhanced release of Ni into the xylem is associated with concurrent release of His from an increased root free His pool.  相似文献   

2.
A proteomic analysis of the Ni hyperaccumulator plant Alyssum lesbiacum was carried out to identify proteins that may play a role in the exceptional degree of Ni tolerance and accumulation characteristic of this metallophyte. Of the 816 polypeptides detected in root tissue by 2D SDS-PAGE, eleven increased and one decreased in abundance relative to total protein after 6-week-old plants were transferred from a standard nutrient solution containing trace concentrations of Ni to a moderately high Ni treatment (0.3 mM NiSO4) for 48 h. These polypeptides were identified by tandem mass spectrometry and the majority were found to be involved in sulphur metabolism (consistent with a re-allocation of sulphur towards cysteine and glutathione), protection against reactive oxygen species, or heat-shock response. In contrast, very few polypeptides were found to change in abundance in root or shoot tissue after plants were exposed for 28 days to 0.03 mM NiSO4, a concentration representing the optimum for growth of this species but sufficient to lead to hyperaccumulation of Ni in the shoot. Under these conditions, constitutively expressed genes in this highly Ni-tolerant species may be sufficient to allow for effective chelation and sequestration of Ni without the need for additional protein synthesis.  相似文献   

3.
Despite the functional importance of histidine (His) as an essential amino acid in proteins and as a metal-coordinating ligand, comparatively little is known about the regulation of its biosynthesis in plants and the potential for metabolic engineering of this pathway. To investigate the contribution of different steps in the pathway to overall control of His biosynthesis, nine His biosynthetic genes were individually over-expressed in Arabidopsis thaliana to determine their effects on free amino acid pools. Constitutive, CaMV 35S -driven over-expression of the cDNAs encoding either isoform of ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme in the pathway, was sufficient to increase the pool of free His by up to 42-fold in shoot tissue of Arabidopsis , with negligible effect on any other amino acid. In contrast, over-expression of cDNAs for seven other enzymes in the biosynthetic pathway had no effect on His content, suggesting that control of the pool of free His resides largely with ATP-PRT activity. Over-expression of ATP-PRT and increased His content had a negative pleiotropic effect on plant biomass production in 35S:PRT1 lines, but this effect was not observed in 35S:PRT2 lines. In the presence of 100 µM Ni, which was inhibitory to wild-type plants, a strong positive correlation was observed between free His content and biomass production, indicating that the metabolic cost of His overproduction was outweighed by the benefit of increased tolerance to Ni. His-overproducing plants also displayed somewhat elevated tolerance to Co and Zn, but not to Cd or Cu, indicating chemical selectivity in intracellular metal binding by His.  相似文献   

4.
Wycisk K  Kim EJ  Schroeder JI  Krämer U 《FEBS letters》2004,578(1-2):128-134
Naturally selected nickel (Ni) tolerance in Alyssum lesbiacum has been proposed to involve constitutively high levels of endogenous free histidine. Transgenic Arabidopsis thaliana expressing a Salmonella typhimurium ATP phosphoribosyl transferase enzyme (StHisG) resistant to feedback inhibition by histidine contained approximately 2-fold higher histidine concentrations than wild type plants. Under exposure to a toxic Ni concentration, biomass production in StHisG expressing lines was between 14- and 40-fold higher than in wild-type plants. This suggested that enhancing the first step in the histidine biosynthesis pathway is sufficient to increase the endogenous free histidine pool and Ni tolerance in A. thaliana.  相似文献   

5.
The mechanism of nickel uptake into vacuoles isolated from leaf tissue of Alyssum lesbiacum was investigated to help understand the ability of this species to hyperaccumulate Ni. An imaging system was designed to monitor Ni uptake by single vacuoles using the metal-sensitive fluorescent dye, Newport Green. Nickel uptake into isolated vacuoles from leaf tissue of A. lesbiacum was enhanced by the presence of Mg/ATP, presumably via energisation of the vacuolar H(+)-ATPase (V-ATPase). This ATP-stimulated Ni uptake was abolished by bafilomycin (a diagnostic inhibitor of the V-ATPase) and by dissipation of the transmembrane pH difference with an uncoupler. These observations are consistent with Ni(2+)/nH(+) antiport activity at the tonoplast driven by a proton electrochemical gradient established by the V-ATPase, which would provide a mechanism for secondary active transport of Ni(2+) into the vacuole. This study provides insights into the molecular basis of Ni tolerance in Alyssum, and may aid in the identification of genes involved in Ni hyperaccumulation.  相似文献   

6.
To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, we investigated the regulation of His biosynthesis at both the molecular and biochemical levels. Three T. goesingense cDNAs encoding the following His biosynthetic enzymes, ATP phosphoribosyltransferase (THG1, GenBank accession no. AF003347), imidazoleglycerol phosphate dehydratase (THB1, GenBank accession no. AF023140), and histidinol dehydrogenase (THD1, GenBank accession no. AF023141) were isolated by functional complementation of Escherichia coli His auxotrophs. Northern analysis of THG1, THD1, and THB1 gene expression revealed that each gene is expressed in both roots and shoots, but at the concentrations and dosage times of Ni treatment used in this study, these genes failed to show any regulation by Ni. We were also unable to observe any increases in the concentration of free His in root, shoot, or xylem sap of T. goesingense in response to Ni exposure. X-ray absorption spectroscopy of root and shoot tissue from T. goesingense and the non-accumulator species Thlaspi arvense revealed no major differences in the coordination of Ni by His in these tissues. We therefore conclude that the Ni hyperaccumulation phenotype in T. goesingense is not determined by the overproduction of His in response to Ni.  相似文献   

7.
Nickel uptake and cellular compartmentation were investigated in three Ni hyperaccumulators: Alyssum bertolonii (Desv), Alyssum lesbiacum (Candargy) and Thlaspi goesingense (Hálácsy). The three species showed similar hyperaccumulation of Ni, but T. goesingense was less tolerant to Ni than the two Alyssum species. An addition of 500 mg Ni kg(-1) to a nutrient-rich growth medium significantly increased shoot biomass of all three species, suggesting that the Ni hyperaccumulators have a higher requirement for Ni than normal plants. Energy-dispersive X-ray microanalysis (EDXA) was performed on frozen-hydrated tissues of leaves (all species) and stems (Alyssum only). In all species analysed, Ni was distributed preferentially in the epidermal cells, most likely in the vacuoles, of the leaves and stems. In stems, there was a second peak of Ni in the boundary cells between the cortical parenchyma and the vascular cylinder. The non-glandular trichomes on the leaf surfaces of the two Alyssum species were highly enriched with Ca, but contained little Ni except in the base. In the leaves of T. goesingense, the large elongated epidermal cells contained more Ni than the cells of the stomatal complexes. The role of cellular compartmentation in Ni hyperaccumulation is discussed.  相似文献   

8.
Russian Journal of Plant Physiology - The work dealt with the influence of free L-histidine on nickel (Ni) translocation into the shoots of the hyperaccumulator plants Alyssum murale, A....  相似文献   

9.
Nickel (Ni) phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is undergoing commercial development. Serpentinite derived soils have a very low ratio of Ca/Mg among soils due the nature of the parent rock. In crop plants, soil Ca reduces Ni uptake and phytotoxicity, so it is possible that the low Ca of serpentine soils could limit hyperaccumulator plant tolerance of serpentine soils used for commercial phytomining. In this study, we investigated the effects of varied Ca concentration in the presence of high Mg characteristic of serpentine soils on Ni uptake and tolerance by serpentine-endemic species Alyssum murale Waldst. et Kit. and A. pintodasilvae T.R. Dudley in comparison with cabbage (Brassica oleracea L. var. capita) in a nutrient solution study. The levels of Ca and Mg used were based on serpentine and normal soils, and Ni was based on achieving over 1% Ni in Alyssum shoots in preliminary tests. Varied solution concentrations of Ni (31.6–1,000 μM for Alyssum, 1.0–10 μM for cabbage) and Ca (0.128–5 mM) were used in a factorial experimental design; 2 mM Mg was used to mimic serpentine soils. Alyssum spp. showed much greater tolerance to high Ni, high Mg, and low Ca solution concentrations than cabbage. For Alyssum spp., Ni induced phytotoxicity was only apparent at 1,000 μM Ni with relatively low and high Ca/Mg quotient. In the 1,000 μM Ni treatment, shoot Ni concentrations ranged from 8.18 to 22.8 g kg?1 for A. murale and 7.60 to 16.0 g kg?1 for A. pintodasilvae. Normal solution Ca concentrations (0.8–2 mM) gave the best yield across all Ni treatments for the Alyssum species tested. It was clear that solution Ca levels affected shoot Ni concentration, shoot yield and Ni translocation from root to shoot, but the relation was non-linear, increasing with increasing Ca up to 2 mM Ca, then declining at the highest Ca. Our results indicate that Ca addition to high Mg serpentine soils with very low Ca/Mg ratio may reduce Ni phytotoxicity and improve annual Ni phytoextraction by Alyssum hyperaccumulator species. Removal of shoot biomass in phytomining will require Ca application to maintain full yield potential.  相似文献   

10.
Heavy metal uptake and distribution were investigated in hairy roots of the Cd hyperaccumulator, Thlaspi caerulescens, and the Ni hyperaccumulator, Alyssum bertolonii. Hairy roots of both species contained high constitutive levels of citric, malic and malonic acids. After treatment with 20 ppm Cd or 25 ppm Ni, about 13% of the total Cd in T. caerulescens roots and 28% of the total Ni in A. bertolonii were associated with organic acids. T. caerulescens and A. bertolonii hairy roots remained healthy and grew well at high concentrations of Cd and Ni, respectively, whereas hairy roots of the non-hyperaccumulator, Nicotiana tabacum, did not. Most of the Cd in T. caerulescens and N. tabacum roots was localised in the cell walls. In contrast, 85-95% of the Ni in A. bertolonii and N. tabacum was associated with the symplasm. Growth of T. caerulescens and A. bertolonii hairy roots was severely reduced in the presence of diethylstilbestrol (DES), an inhibitor of plasma membrane H(+)-ATPase. Treatment with DES increased the concentration of Cd in the symplasm of T. caerulescens about 6-fold with retention of root viability, whereas viability and Ni transport across the plasma membrane were both reduced in A. bertolonii. These results suggest that the mechanisms of Cd tolerance and hyperaccumulation in T. caerulescens hairy roots are capable of withstanding the effects of plasma membrane depolarisation, whereas Ni tolerance and hyperaccumulation in A. bertolonii hairy roots are not.  相似文献   

11.
12.
Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.  相似文献   

13.
Hairy roots were used to investigate nickel uptake by the hyperaccumulator species, Alyssum bertolonii, A. tenium, and A. troodii. The Ni biosorption capacity of A. tenium hairy roots was lower than for other types of biomass such as bacteria and algae; in short-term (9-h) equilibrium studies, the highest Ni content measured in the roots was 17 500 microg g(-1) dry weight at a liquid concentration of about 4000 ppm. Using long-term hairy root cultures, it was demonstrated that Ni tolerance and hyperaccumulation do not necessarily depend on the presence of shoots or root-shoot translocation. A. bertolonii hairy roots remained healthy in appearance and continued to grow in the presence of 20-100 ppm Ni, accumulating up to 7200 microg g(-1) dry weight Ni. In contrast, hairy roots of Nicotiana tabacum turned dark brown at 20 ppm Ni and growth was negligible. The ability to grow at high external Ni concentrations allowed hyperaccumulator hairy roots to remove much greater amounts of heavy metals from the culture liquid than nonhyperaccumulator hairy roots, even though biomass Ni concentrations were similar. Although hairy roots proved to be a useful tool for investigating Ni hyperaccumulation, there were significant differences in the Ni uptake capacity of hairy roots and whole plants. Regenerated plants of A. tenium were much more tolerant of Ni and capable of accumulating higher Ni concentrations than hairy roots of this species.  相似文献   

14.
15.
16.
The nickel (Ni) hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni from metal-enriched soils. Here, metal co-tolerance, accumulation and localization were investigated for A. murale exposed to metal co-contaminants. A. murale was irrigated with Ni-enriched nutrient solutions containing basal or elevated concentrations of cobalt (Co) or zinc (Zn). Metal localization and elemental associations were investigated in situ with synchrotron X-ray microfluorescence (SXRF) and computed-microtomography (CMT). A. murale hyperaccumulated Ni and Co (> 1000 microg g(-1) dry weight) from mixed-metal systems. Zinc was not hyperaccumulated. Elevated Co or Zn concentrations did not alter Ni accumulation or localization. SXRF images showed uniform Ni distribution in leaves and preferential localization of Co near leaf tips/margins. CMT images revealed that leaf epidermal tissue was enriched with Ni but devoid of Co, that Co was localized in the apoplasm of leaf ground tissue and that Co was sequestered on leaf surfaces near the tips/margins. Cobalt-rich mineral precipitate(s) form on leaves of Co-treated A. murale. Specialized biochemical processes linked with Ni (hyper)tolerance in A. murale do not confer (hyper)tolerance to Co. A. murale relies on a different metal storage mechanism for Co (exocellular sequestration) than for Ni (vacuolar sequestration).  相似文献   

17.
The ability of Thlaspi goesingense Hálácsy to hyperaccumulate Ni appears to be governed by its extraordinary degree of Ni tolerance. However, the physiological basis of this tolerance mechanism is unknown. We have investigated the role of vacuolar compartmentalization and chelation in this Ni tolerance. A direct comparison of Ni contents of vacuoles from leaves of T. goesingense and from the non-tolerant non-accumulator Thlaspi arvense L. showed that the hyperaccumulator accumulates approximately 2-fold more Ni in the vacuole than the non-accumulator under Ni exposure conditions that were non-toxic to both species. Using x-ray absorption spectroscopy we have been able to determine the likely identity of the compounds involved in chelating Ni within the leaf tissues of the hyperaccumulator and non-accumulator. This revealed that the majority of leaf Ni in the hyperaccumulator was associated with the cell wall, with the remaining Ni being associated with citrate and His, which we interpret as being localized primarily in the vacuolar and cytoplasm, respectively. This distribution of Ni was remarkably similar to that obtained by cell fractionation, supporting the hypothesis that in the hyperaccumulator, intracellular Ni is predominantly localized in the vacuole as a Ni-organic acid complex.  相似文献   

18.
Roles of organic acids and nitrate in the long-distance transport of cobalt (Co) in xylem saps of hyperaccumulator Alyssum murale and non-hyperaccumulator Trifolium subterraneum were studied under hydroponic conditions. Organic acids (oxalic, malic, malonic, citric, and fumaric) and nitrate in xylem sap samples were separated and determined simultaneously by reversed-phase high performance liquid chromatography after solid-phase extraction with nanosized hydroxyapatite. Results indicated that Co treatment significantly increased the concentrations of xylem oxalic and malic acids for the hyperaccumulator A. murale compared to the control but significantly decreased the concentrations of xylem nitrate and malonic acid; concentrations of citric acid in xylem sap samples did not show significant difference between the control and Co treatments. By analyzing the relationship between the concentrations of organic acids, nitrate, and concentrations of Co in xylem saps, it could be concluded that oxalic and malic acids in xylem saps seemed to participate in the long-distance Co translocation process, and citric acid did not relate to the xylem Co transport of A. murale and T. subterraneum. Our work might be very useful for understanding the mechanism of long-distance transport of heavy metals in hyperaccumulator.  相似文献   

19.
Baklanov IA 《Tsitologiia》2011,53(7):572-579
Epidermal cells of some plants are able to accumulate heavy metals (Zn, Ni, Cd) in high concentrations. We have investigated this ability in plants of the genus Alyssum L. differing in tolerance to nickel (Ni). It was found that the preferential accumulation of Ni occurred in the epidermis, whereas in other tissues the metal was detected at lower concentrations. Also it was found that the epidermal cells were characterized by heterogeneity in relation to Ni accumulation, the largest amount of metal accumulated in the large epidermal cells and in trichomes. It was shown species-specific features of Ni distribution in the leaf tissues of Alyssum spp. The reasons of the heterogeneity of epidermal cells in relation to Ni accumulation are discussed. We have attempted to resolve the contradictions encountered in the literature concerning the distribution and accumulation of Ni in the leaf tissues of plants of the genus Alyssum L.  相似文献   

20.
Phytomining techniques based on metal-hyperaccumulating plants can be implemented in serpentine quarry wastes for Ni recovery. However, strategies must be developed to overcome the unfavourable plant growth conditions that these substrates present and to optimize Ni yields. In this study, the Ni hyperaccumulators Alyssum serpyllifolium, Alyssum inflatum, and Alyssum bracteatum were evaluated for their Ni phytoextraction efficiency from quarry tailings. Effects of two organic amendments, composted municipal sewage sludge and cow manure, on plant growth and physiological status and Ni removal were determined. Organic amendments were incorporated at two addition rates (5% and 20% w/w). The best-performing hyperaccumulators were A. inflatum and A. serpyllifolium. Organic amendments improved plant biomass production, photosynthetic efficiency and nutrition, but reduced shoot Ni concentrations. However, the stimulation in biomass resulted in significantly enhanced Ni yields. The most promising results were found using low addition rates and after manure incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号