首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Sex-determining mechanisms are highly variable between phyla. Only one example has been found in which structurally and functionally related genes control sex determination in different phyla: the sexual regulators mab-3 of Caenorhabditis elegans and doublesex of Drosophila both encode proteins containing the DM domain, a novel DNA-binding motif. These two genes control similar aspects of sexual development, and the male isoform of DSX can substitute for MAB-3 in vivo, suggesting that the two proteins are functionally related. DM domain proteins may also play a role in sexual development of vertebrates. A human gene encoding a DM domain protein, DMRT1, is expressed only in the testis in adults and maps to distal 9p24.3, a short interval that is required for testis development. Earlier in development we find that murine Dmrt1 mRNA is expressed exclusively in the genital ridge of early XX and XY embryos. Thus Dmrt1 and Sry are the only regulatory genes known to be expressed exclusively in the mammalian genital ridge prior to sexual differentiation. Expression becomes XY-specific and restricted to the seminiferous tubules of the testis as gonadogenesis proceeds, and both Sertoli cells and germ cells express Dmrt1. Dmrt1 may also play a role in avian sexual development. In birds the heterogametic sex is female (ZW), and the homogametic sex is male (ZZ). Dmrt1 is Z-linked in the chicken. We find that chicken Dmrt1 is expressed in the genital ridge and Wolffian duct prior to sexual differentiation and is expressed at higher levels in ZZ than in ZW embryos. Based on sequence, map position, and expression patterns, we suggest that Dmrt1 is likely to play a role in vertebrate sexual development and therefore that DM domain genes may play a role in sexual development in a wide range of phyla.  相似文献   

3.
4.
5.
6.
7.
8.
Fish specific duplication of Dmrt2: characterization of zebrafish Dmrt2b   总被引:1,自引:0,他引:1  
Zhou X  Li Q  Lu H  Chen H  Guo Y  Cheng H  Zhou R 《Biochimie》2008,90(6):878-887
  相似文献   

9.
10.
11.
12.
13.
In this study, the cDNA of dmrt1 gene from the Chinese sturgeon Acipenser sinensis was isolated and its expression pattern was characterized in different tissues of immature A. sinensis. By real‐time quantitative PCR (qrtPCR) analysis, the A. sinensis dmrt1 mRNA was detected mainly in gonad and with a higher level in the testis than the ovary, especially in 3 and 4 year‐old samples. This indicated that the dmrt1 expression exhibited gradual testis specificity with development. The subcellular localization analysis indicated that the Dmrt1 protein exists only in germ cells and not in somatic cells. These results suggest that A. sinensis dmrt1 might be a highly specific sex differentiation gene for testis development and spermatogenesis.  相似文献   

14.
15.
16.
17.
Kawamata M  Nishimori K 《FEBS letters》2006,580(27):6442-6446
Genes including DM domain regulate sexual development in diverse metazoan phyla. One of these genes, Dmrt7, was expressed only in testes of adult mice. To determine the role of Dmrt7 in mice, we generated Dmrt7-knockout mice (Dmrt7-/-). Although the Dmrt7-/- showed normal growth, null males were infertile. No sperm was detected in the epididymis of Dmrt7-/- adult males. Absence of spermatids in a histological analysis, decreased expression of Ccna1 mRNA and the accumulation of SCP3-positive spermatocytes showed the arrest of spermatogenesis at the pachytene stage in the Dmrt7-knockout mice.  相似文献   

18.
19.
Otake S  Endo D  Park MK 《Gene》2011,488(1-2):23-34
Zing finger AN1-type domain 3 (ZFAND3), also known as testis expressed sequence 27 (Tex27), is a gene found in the mouse testis, but its physiological function is unknown. We identified the full-length sequences of two isoforms (short and long) of ZFAND3 cDNA from Japanese quail and leopard gecko. This is the first cloning of avian and reptilian ZFAND3 cDNA. The two isoforms are generated by alternative polyadenylation in the 3'UTR and have the same ORF sequences encoding identical proteins. There were highly conserved regions in the 3'UTR of the long form near the polyadenylation sites from mammals to amphibians, suggesting that the features for determining the stability of mRNA or translation efficiency differ between isoforms. The deduced amino acid sequence of ZFAND3 has two putative zinc finger domains, an A20-like zinc finger domain at the N-terminal and an AN1-like zinc finger domain at the C-terminal. Sequence analysis revealed an additional exon in the genomic structures of the avian and reptilian ZFAND3 genes which is not present in mammals, amphibians, or fish, and this exon produces additional amino acid residues in the A20-like zinc finger domain. Expression analysis in Japanese quail revealed that the expression level of ZFAND3 mRNA was high in not only the testis but also the ovary, and ZFAND3 mRNA was expressed in both spermatides of the testis and oocytes of the ovary. While the short form mRNA was mainly expressed in the testis, the expression level of the long form mRNA was high in the ovary. These results suggest that ZFAND3 has physiological functions related to germ cell maturation and regulatory mechanisms that differ between the testis and ovary.  相似文献   

20.
Genes containing the DM domain, a conserved DNA binding motif first found in Doublesex of Drosophila and mab-3 of Caenorhabditis elegans, regulate sexual differentiation in multiple phyla. The DM domain gene Dmrt1 is essential for testicular differentiation in vertebrates. In the mouse, Dmrt1 is expressed in pre-meiotic germ cells and in Sertoli cells, which provide essential support for spermatogenesis. Dmrt1 null mutant mice have severely dysgenic testes in which Sertoli cells and germ cells both fail to differentiate properly after birth. Here we use conditional gene targeting to identify the functions of Dmrt1 in each cell type. We find that Dmrt1 is required in Sertoli cells for their postnatal differentiation, and for germ line maintenance and for meiotic progression. Dmrt1 is required in germ cells for their radial migration to the periphery of the seminiferous tubule where the spermatogenic niche will form, for mitotic reactivation and for survival beyond the first postnatal week. Thus Dmrt1 activity is required autonomously in the Sertoli and germ cell lineages, and Dmrt1 activity in Sertoli cells is also required non-autonomously to maintain the germ line. These results demonstrate that Dmrt1 plays multiple roles in controlling the remodeling and differentiation of the juvenile testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号