首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In order to test the variation of enzyme activity in serum of cattle and sheep during the day, blood samples were taken at three hrs. interval from 6 a.m. to 9 p.m. The following enzymes were assayed: Aspartate aminotransferase (AspAT = GOT), alanine aminotransferase (AlAT = GPT), total lactate dehydrogenase (LDH), and a-hydroxybutyrate dehydrogenase (HBD). The variation between animals contributed by far to the greatest part of the total variation in clinical healthy animals. The time-of-day-dependant variation was less than 3 %, except for alanine aminotransferase. During the first two weeks of spring pasture serum aspartate and alanine aminotransferase levels were significantly raised in both cows and ewes, compared with serum levels of the same animals on indoor feeding. No such increase occurred in total lactate dehydrogenase.  相似文献   

2.
2 bromoethanamine hydrobromide (BEA) has been widely considered to be a target selective nephrotoxin that causes necrosis of the medulla in 24-48 h, but recent reports suggest that early cortical injury is also associated with this lesion. In order to assess the cortical effects of BEA (100 mg kg-1 bw single ip injection), several urinary markers of renal injury were evaluated over a 7 day period in male Wistar Albino rats. Hexachlorobutadiene (HCBD 150 mg kg-1 bw in peanut oil ip), a renal toxin which targets selectively for the proximal tubule, was used as a comparison. After BEA treatment, urinary levels of alanine aminopeptidase, gamma-glutamyl-transpeptidase, alkaline phosphatase and glucose increased transiently. Each of the proximal tubule marker enzymes peaked earlier following HCBD treatment and elevation of alanine aminopeptidase and gamma glutamyl transpeptidase was sustained for longer periods than for BEA. Following BEA treatment, lactate dehydrogenase rose prominently on day 1 followed by a return to control values on day 2 and a further rise on day 3 and remained high until the end of the study. BEA also increased the urinary excretion of total protein and albumin. After HCBD treatment, lactate dehydrogenase showed a transient elevation and glucose levels were slightly increased. Based on the present observations the changes induced by BEA administration on urinary markers of renal injury are different from those observed following HCBD treatment. These findings suggest that BEA toxicity also involves other parts of the kidney besides the papilla.  相似文献   

3.
2 bromoethanamine hydrobromide (BEA) has been widely considered to be a target selective nephrotoxin that causes necrosis of the medulla in 24-48 h, but recent reports suggest that early cortical injury is also associated with this lesion. In order to assess the cortical effects of BEA (100 mg kg-1 bw single ip injection), several urinary markers of renal injury were evaluated over a 7 day period in male Wistar Albino rats. Hexachlorobutadiene (HCBD 150 mg kg-1 bw in peanut oil ip), a renal toxin which targets selectively for the proximal tubule, was used as a comparison. After BEA treatment, urinary levels of alanine aminopeptidase, gamma-glutamyl-transpeptidase, alkaline phosphatase and glucose increased transiently. Each of the proximal tubule marker enzymes peaked earlier following HCBD treatment and elevation of alanine aminopeptidase and gamma glutamyl transpeptidase was sustained for longer periods than for BEA. Following BEA treatment, lactate dehydrogenase rose prominently on day 1 followed by a return to control values on day 2 and a further rise on day 3 and remained high until the end of the study. BEA also increased the urinary excretion of total protein and albumin. After HCBD treatment, lactate dehydrogenase showed a transient elevation and glucose levels were slightly increased. Based on the present observations the changes induced by BEA administration on urinary markers of renal injury are different from those observed following HCBD treatment. These findings suggest that BEA toxicity also involves other parts of the kidney besides the papilla.  相似文献   

4.
The biochemical effects of acute and chronic psychological stress have been investigated in male Sprague-Dawley rats using a combination of 1H NMR spectral analysis of plasma and conventional hematological analyses. Animals were subjected to 35 consecutive days of 6-h sessions of stress, and following a 9 day break, were stressed for a further 6-h period. Plasma samples were collected at 0, 1, 3, and 6 h on days 1, 9, 21, 35, and 44, measured using 600 MHz 1H NMR spectroscopy, and analyzed by Principal Components Analysis. Time-dependent biochemical effects of psychological stress on a range of endogenous metabolites were evident and were correlated with the intensity of the stress response as defined by corticosterone and hematological parameters. Following acute stress, increases in the levels of glucose and ketone bodies, and decreases in the levels of acetate, alanine, isoleucine, lactate, leucine, valine, and lipoproteins, were observed. Chronic stress-induced increases in plasma levels of alanine, lactate (day 9), and leucine, valine, and choline (day 44) and decreases in acetate (day 9) and lipoprotein concentrations were observed. Positive correlations between plasma corticosterone level and glucose and glycerol, and between plasma lipoprotein concentrations and hemoglobin levels, were established using Projection to Latent Structures (PLS) analysis. This study indicates the potential of using NMR-based metabonomic strategies for the characterization of endogenous metabolic perturbations induced by psychological stressors and lifestyle choices.  相似文献   

5.
The present study was designed to determine the effect of alloxan-induced diabetes in rabbits on L-[15N]alanine and [15N]glycine kinetic parameters. This process was measured by single-dose administration of 15N-labeled amino acids to postabsorptive control rabbits and alloxan-induced diabetics and insulin-treated diabetic rabbits. Gas chromatography-mass spectrometry was used to determine the 15N enrichment of plasma glycine and alanine. Glycine and alanine pools and turnover rate constants were estimated from isotope enrichment time decay curves. The data from the present study indicate that plasma glycine and alanine turnover rate constants increased by 25-50% after alloxan administration but pool sizes showed only little changes, resulting in highly significant increases in fluxes and metabolic clearance rates of both alanine and glycine following alloxan administration; single-dose crystalline insulin or protamine zinc insulin treatment failed to restore the turnover rate constants of glycine or alanine toward control values and caused a depletion of 50% in glycine pool size; 7 days prolonged treatment with protamine zinc insulin restored alanine and glycine fluxes and metabolic clearance rates towards control postabsorptive values; and the reduction in flux values following insulin treatment is consistent with the reduction in the plasma glucose levels in rabbits. The data suggest that the regulatory mechanisms for uptake and metabolism of circulating glycogenic amino acids no longer are operative as a consequence of insulin deficiency following alloxan administration. Exogenous insulin restored the activity of the regulatory mechanism toward the postabsorptive control state.  相似文献   

6.
The responses of plasma glucose, insulin (IRI), glucagon (IRG) and free fatty acids (FFA) following alanine loading (0.1 g/kg) were observed in 9 control subjects and 7 hyperthyroid patients, before and after restoration of thyroid function to normal. Despite the persistence of impaired glucose response to alanine, the blunted IRI and IRG responses in the hyperthyroid state were improved with a significant reduction in fasting IRI and IRG after treatment. Markedly increased FFA following alanine loading in hyperthyroid patients was reduced after treatment, but the FFA concentration remained greater than in the control subjects. We tentatively conclude that the impaired alpha and beta-cell responses to alanine were temporarily induced by the direct and/or indirect effects of thyroid hormone excess.  相似文献   

7.
Gluconeogenesis from amino acids in neonatal rat liver   总被引:20,自引:17,他引:3       下载免费PDF全文
1. The utilization of amino acids for gluconeogenesis by rat liver develops in postnatal life, reaching maximum activity at the fifth day. 2. The activity of aspartate transaminase shows a similar trend in postnatal development and the increased activity appears to be due to the soluble enzyme. 3. The activity of alanine transaminase is low in foetal and postnatal rat liver and increases in activity at about the twentieth day. 4. Aspartate, glutamate and alanine make a major contribution to gluconeogenesis in the postnatal rat liver.  相似文献   

8.
The effects of one intraperitoneal injection of 60–65 mg/kg of 3-acetylpyridine (3-AP) on the levels of aspartate, glutamate, GABA, taurine, glycine, and alanine in the cerebellum, medulla, telencephalon, and diencephalon-mesencephalon of the rat were studied at various times (4–28 days) after injection. In the first 4–7 days, the levels of glutamate, GABA, glycine, and alanine in the cerebellum were 10–30% higher in the 3-AP-treated rats than in the control animals. By day 14, the levels of these four amino acids were normal (in the case of glutamate and glycine) or below normal (for GABA and alanine). By day 21, the values for GABA and alanine returned to normal. In the first 7 days, the level of aspartate in the cerebellum was the same in both the 3-AP- and saline-injected groups. From days 14 to 28, the level of aspartate in the cerebellum was 10–20% lower in the 3-AP-injected group than in the saline-treated animals. The level of taurine in the cerebellum was 15–30% lower in the 3-AP group than in the control group from days 7 to 28. The pattern of changes observed in the medulla in the first 7 days was similar to that found in the cerebellum for this period. However, unlike the data for the cerebellum, the level of aspartate in the medulla was unchanged by the 3-AP injection from day 14 to day 28, and the level of glutamate in the medulla remained higher (10–15%) from days 14 to 28 in the 3-AP-injected animals with respect to control values. The levels of taurine in the medulla were lower (10–15%) from day 7 to day 28 in the 3-AP injected group with respect to control values. The injection of 3-AP did not alter the levels of aspartate, glutamate, GABA, taurine, glycine, or alanine in the telencephalon on days 7, 14, 21, or 28 and in the diencephalon-mesencephalon on day 21 with respect to control levels.  相似文献   

9.
Dual choice feeding tests were performed to determine a preference of forager honeybees for specific amino acids. Artificial nectar containing proline was preferred over those containing only sugars. Nectar containing alanine was preferred on the first day, but preference was no longer significant thereafter. On the contrary, a negative response was found for serine. When the bees were given the choice between two nectars enriched with different compounds, proline was preferred above both alanine and serine, and alanine above serine.  相似文献   

10.
The cerebella of rats were exposed to selective doses of low levels of x-irradiation beginning on day 4, 8, or 12 following birth. The doses of x-irradiation given on days 12, 13, and 15 (12–15X group) resulted in a 24% reduction in the wet weight of the cerebella; the doses given on days 8, 9, 11, 13, and 15 (8–15X group) resulted in a 57% weight reduction; the doses given on days 4, 5, 7, 9, 11, 13, and 15 (4–15X group) resulted in a 67% weight reduction. The schedule of x-irradiation begun on day 12, which prevented the acquisition of the late-forming granule cells, reduced the levels (nmole/mg dry tissue weight) of alanine (22%) and glutamate (10%), and increased the levels of glycine (15%), GABA (13%), and taurine (71%), with respect to control values. The schedule begun on day 8, which prevented the acquisition of stellate and granule cells, reduced the levels of alanine (15%), glutamate (12%), and taurine (21%), and increased the levels of glycine (102%) and GABA (56%). The schedule begun on day 4, which prevented the acquisition of basket, stellate, and granule cells, reduced the level of glutamate (15%) and increased the levels of glycine (186%) and GABA (78%). The levels of alanine and taurine in the cerebella of the 4–15X group were the same as control values. The level of aspartate in the cerebella of the 3 groups of x-irradiated animals was not significantly different from control values. The consistent reduction in the level of glutamate as a function of the number of doses of x-irradiation is suggestive that glutamate may have a higher level in the granule cells than in other cells in the cerebellum, and that the higher level may be a reflection of a possible excitatory transmitter role for glutamate. In addition, the data are interpreted in terms of taurine being associated with the stellate cells and possibly serving as a transmitter for these inhibitory interneurons.  相似文献   

11.
Amino acid synthesis from glucose-U-14C was investigated in 2 day post-emergent and pregnant females of Glossina morsitans. This insect can synthesize alanine, aspartic acid, cystine, glutamic acid, glycine, proline, and serine from glucose. Arginine, histidine, hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, taurine, threonine, and valine showed no radioactivity and hence may be classified as nutritionally indispensable amino acids. Although tyrosine and hydroxyproline were not synthesized from glucose, they are at least partially dispensable nutrients for this insect because their synthesis from phenylalanine has been demonstrated. After the labelled glucose injection the highest radioactivity was recovered in the proline fraction. This is probably related to its rôle as an important energy reserve for flight. The radioactive amino acids recovered from females and from their offspring following glucose-U-14C injection were similar to those recovered from younger females. Radioactivity was also detected in the expired CO2 and the excreta. The amino acids alanine, arginine, cystine, glycine, histidine, leucine/isoleucine, lysine, methionine, proline, and valine were identified in the excreta, of which arginine and histidine were in the largest amounts. Only excreted alanine, glycine, and proline showed radioactivity.  相似文献   

12.
Tracer quantities (in 0.2 ml) of 13N-labeled glutamate, alanine, or glutamine(amide) were administered rapidly (less than or equal to 2 s) via the portal vein of anesthetized adult male rats. Liver content of tracer at 5 s was 57 +/- 6 (n = 6), 24 +/- 1 (n = 3), and 69 +/- 7 (n = 3)% of the injected dose, respectively. Portal-hepatic vein differences for the corresponding amino acids were 17 +/- 6, 26 +/- 8, and 19 +/- 9% (n = 4), respectively, suggesting some export of glutamate and glutamine, but not of alanine, to the hepatic vein. Following L-[13N]glutamate administration, label rapidly appeared in liver alanine and aspartate (within seconds). The data emphasize the rapidity of nitrogen exchange via linked transaminases. By 30 s following administration of either L-[13N]glutamate or L-[13N]alanine, label in liver glutamate was comparable; yet, by 1 min greater than or equal to 9 times as much label was present in liver glutamine(amine) following L-[13N]glutamate administration than following L-[13N]alanine administration. Conversely, label in liver urea at 1 min was more pronounced in the latter case despite: (a) comparable total pool sizes of glutamate and alanine in liver; and (b) label incorporation from alanine into urea must occur via prior transfer of alanine nitrogen to glutamate. The data provide evidence for zonal differences in uptake of alanine and glutamate from the portal vein in vivo. The rate of turnover of L-[amide-13N]glutamine was considerably slower than that of L-[13N]alanine or of L-[13N]glutamate, presumably due in part to the higher concentration of glutamine in that organ. Nevertheless, it was possible to show that despite occasional suggestions to the contrary, glutamine(amide) is a source of urea nitrogen in vivo. The present findings continue to emphasize the rapidity of nitrogen exchange reactions in vivo.  相似文献   

13.
Blood lithium (Li) levels, renal functional parameters and urine excretion of enzymatic activities having different intracellular sites were investigated on rats submitted to acute and subacute Li chloride administration. In acute experiments increased levels of all detected enzymes were assayed following Li single doses of 5 and 10 mEq/kg b.w. In subacute poisoning, urine output of lactate dehydrogenase, aspartate transaminase and alanine transaminase was significantly over the basal ranges following 15 days in concomitance with marked elevation of plasma Li levels and exhibited progressive increase until 30 days; on the 10th day following Li withdrawal, elevated excretion of enzymatic activities was still assayed. The results are in agreement with data about the localization of the histologic lesions involving different sites of the nephron in acute Li poisoning and the distal tubular tract in subacute toxicity. In subacute administration the output of cytoplasmic and mitochondrial activities can be assumed as an index of damage of the nephron cells which can persist following Li withdrawal. Our findings indicate that the urine enzyme assay is a valuable tool to detect renal damage in experimental Li nephropathy.  相似文献   

14.
This study examined the effects of dietary casein and sucrose levels on nutrient intake, and distinguished the effects of carbohydrate and protein consumption on growth, fat content, pyruvate metabolism and blood trehalose level of 5th instar Manduca sexta larvae. Growth increased with increasing casein consumption but was unaffected by carbohydrate intake. Fat content also increased with carbohydrate consumption, but on carbohydrate-free diets fat content increased with increased protein consumption. Blood trehalose level and pyruvate metabolism were examined by nuclear magnetic resonance spectroscopy analysis of blood following administration of (3-(13)C)pyruvate. On diets containing sucrose, blood trehalose increased with increasing carbohydrate intake, and on most diets trehalose was synthesized entirely from dietary sucrose. Pyruvate cycling, indicated by the alanine C2/C3 (13)C enrichment ratio, increased with carbohydrate consumption reflecting increased glycolysis, and pyruvate decarboxylation exceeded carboxylation on all sucrose diets. Larvae that consumed <75 mg/day sucrose were gluconeogenic, based on the [2 (trehalose C6)(Glx C3/C2)]/alanine C2] (13)C enrichment ratio. On carbohydrate-free diets, blood trehalose levels were low and maintained entirely by gluconeogenesis. Blood trehalose level increased with increasing protein intake. Pyruvate cycling was very low, although many insects displayed higher levels of pyruvate decarboxylation than carboxylation. All gluconeogenic larvae displayed alanine (13)C enrichment ratios <0.35 and had blood trehalose levels <50 mM.  相似文献   

15.
Following administration of deuterated water (2H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by 2H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by 1H/2H NMR analysis of alanine from seabass kept for 6 days in 5% 2H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine 2H-enrichment in the 0.1–0.4% range from 50 mmol of alanine recovered from muscle protein.  相似文献   

16.
A method is introduced for quantitating protein synthetic rates in humans by use of (2)H(2)O. Its validity was tested in subjects with end-stage renal disease. Six clinically stable subjects, hemodialyzed three times weekly, ingested (2)H(2)O to a body water (2)H enrichment of approximately 0.4%. On dialysis, body water enrichment declined to approximately 0.1%. Enrichment of the alpha-hydrogen of plasma free alanine was also approximately 0.4% before and approximately 0.1% after dialysis. Beta-hydrogen enrichment was approximately 80-100% of alpha-hydrogen enrichment. (2)H(2)O was ingested to replace (2)H(2)O removed after each dialysis for 15-51 days, returning enrichment to approximately 0.4%. Enrichment of alanine from plasma albumin gradually increased, with again approximately 80-100% as much (2)H in beta- as in alpha-hydrogens. With continued dialyses, without (2)H(2)O replacement, alanine from albumin enrichment gradually declined, whereas free alanine and water enrichments were negligible. The fractional albumin synthesis rate, calculated from the increase in enrichment in alanine from albumin, was 4.0 +/- 0.5%/day, and from the decrease, 4.6 +/- 0.2%/day. Thus body water enrichment in a subject given (2)H(2)O can be maintained constant long term. A rapid exchange, essentially complete, occurs between the hydrogens of alanine and body water. An integrated measure over a long period of albumin's synthetic rate can be estimated from both the rise in enrichment of alanine from the protein during (2)H(2)O ingestion and fall on (2)H(2)O withdrawal, while the subject's living routine is uninterrupted. Estimates are in subjects with renal disease, but the method should be applicable to estimates of protein synthetic rates in normal subjects and in other pathological states.  相似文献   

17.
This paper concerns an enzymological investigation into a putative canine analogue of the human autosomal recessive disease primary hyperoxaluria type 1 (alanine:glyoxylate/serine:pyruvate aminotransferase deficiency). The liver and kidney activities of alanine:glyoxylate aminotransferase and serine:pyruvate aminotransferase in two Tibetan Spaniel pups with familial oxalate nephropathy were markedly reduced when compared with a variety of controls. There were no obvious deficiencies in a number of other enzymes including D-glycerate dehydrogenase/glyoxylate reductase which have been shown previously to be deficient in primary hyperoxaluria type 2. Immunoblotting of liver and kidney homogenates from oxalotic dogs also demonstrated a severe deficiency of immunoreactive alanine:glyoxylate aminotransferase. The developmental expression of alanine:glyoxylate/serine:pyruvate aminotransferase was studied in the livers and kidneys of control dogs. In the liver, enzyme activity and immunoreactive protein were virtually undetectable at 1 day old, but then increased to reach a plateau between 4 and 12 weeks. During this period the activity was similar to that found in normal human liver. The enzyme activities and the levels of immunoreactive protein in the kidneys were more erratic, but they appeared to increase up to 8 weeks and then decrease, so that by 36 weeks the levels were similar to those found at 1 day. The data presented in this paper suggest that these oxalotic dogs have a genetic condition that is analogous, at least enzymologically, to the human disease primary hyperoxaluria type 1.  相似文献   

18.
This paper concerns an enzymological investigation into a putative canine canalogue of the human autosomal recesive disease primary hyperoxaluria type 1 (alanine:glyoxylate / serine:pyruvate aminotransferase deficiency). The liver and kidney activities of alanine:glyoxylate aminotransferase and seribe:pyruvate aminotransferase in two Tibetan Spaniel pups with familial oxalate nephripathy were markedly reduced when compared with a variety of controls. There were no obvious deficiencies in a number of other enzymes including d-glycerate dehydrogenese / glyoxylate reductase which have been shown previously to be deficient in primary hyperoxaluria type 2. Immunoblotting of liver and kidney homogenates from oxalotic dogs also demonstrated a severe deficiency of immunoreactive alanine:glyoxylate aminotransferase. The developmental expression of alanine:glyoxylate / serine:pyruvate aminotransferase was studied in the livers and kidneys of control dogs. In the liver, enzyme activity and immunoreactive protein were virtually undetectable at 1 day old, but then increased to reach a plateau between 4 and 12 weeks. During this period the activity was similar to that found in normal humanb liver. The enzyme activities and the levels of immunoreactive protein in the kidneys were more erratic, but they appeared to increase up to 8 weeks and then decrease, so that by 36 weeks the levels were similar to those found at 1 day. The data presented in this paper suggest that these oxalotic dogs have a genetic condition that is anlogous, at least enzymologically, to the human disease primary hyperoxaluria type 1.  相似文献   

19.
Unilateral frontal cortex ablations were performed in rats so that the glutamate terminals in the ipsilateral rostral neostriatum were removed. At 1 or 7 days later, intraperitoneal injections of ammonium acetate induced different changes in amino acid concentrations in the intact and deafferentated neostriatum. After 1 day, the level of glutamate decreased only in the intact side, whereas that of glutamine increased and that of aspartate decreased to the same extent on both sides following ammonia injection. After 7 days, the glutamate level decreased more in the intact than the decorticated side in both nonconvulsing and convulsing rats. The concentration of alanine increased most in the intact neostriatum, whereas glutamine levels increased and aspartate levels decreased to the same extent on both sides in nonconvulsing and convulsing rats. The results indicate that ammonia has a more pronounced effect on neuronal than glial glutamate pools.  相似文献   

20.
Coenzyme A (CoA-SH), a cofactor in carboxyl group activation reactions, carries out a function in nonribosomal peptide synthesis that is analogous to the function of tRNA in ribosomal protein synthesis. The amino acid selectivity in the synthesis of aminoacyl-thioesters by nonribosomal peptide synthetases is relaxed, whereas the amino acid selectivity in the synthesis of aminoacyl-tRNA by aminoacyl-tRNA synthetases is restricted. Here I show that isoleucyl-tRNA synthetase aminoacylates CoA-SH with valine, leucine, threonine, alanine, and serine in addition to isoleucine. Valyl-tRNA synthetase catalyzes aminoacylations of CoA-SH with valine, threonine, alanine, serine, and isoleucine. Lysyl-tRNA synthetase aminoacylates CoA-SH with lysine, leucine, threonine, alanine, valine, and isoleucine. Thus, isoleucyl-, valyl-, and lysyl-tRNA synthetases behave as aminoacyl-S-CoA synthetases with relaxed amino acid selectivity. In contrast, RNA minihelices comprised of the acceptor-TpsiC helix of tRNA(Ile) or tRNA(Val) were aminoacylated by cognate synthetases selectively with isoleucine or valine, respectively. These and other data support a hypothesis that the present day aminoacyl-tRNA synthetases originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis, functionally similar to the present day nonribosomal peptide synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号