首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1  chloroplasts a functional maltase (MAL) from baker’s yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.

Expressing a yeast maltase in chloroplasts of the Arabidopsis maltose transporter mutant mex1 prevents the marked developmental defects typical for that mutant and enhances plant frost tolerance.  相似文献   

3.
4.
Bartonella T4SS effector BepC was reported to mediate internalization of big Bartonella aggregates into host cells by modulating F-actin polymerization. After that, BepC was indicated to induce host cell fragmentation, an interesting cell phenotype that is characterized by failure of rear-end retraction during cell migration, and subsequent dragging and fragmentation of cells. Here, we found that expression of BepC resulted in significant stress fiber formation and contractile cell morphology, which depended on combination of the N-terminus FIC (filamentation induced by c-AMP) domain and C-terminus BID (Bartonella intracellular delivery) domain of BepC. The FIC domain played a key role in BepC-induced stress fiber formation and cell fragmentation because deletion of FIC signature motif or mutation of two conserved amino acid residues abolished BepC-induced cell fragmentation. Immunoprecipitation confirmed the interaction of BepC with GEF-H1 (a microtubule-associated RhoA guanosine exchange factor), and siRNA-mediated depletion of GEF-H1 prevented BepC-induced stress fiber formation. Interaction with BepC caused the dissociation of GEF-H1 from microtubules and activation of RhoA to induce formation of stress fibers. The ROCK (Rho-associated protein kinase) inhibitor Y27632 completely blocked BepC effects on stress fiber formation and cell contractility. Moreover, stress fiber formation by BepC increased the stability of focal adhesions, which consequently impeded rear-edge detachment. Overall, our study revealed that BepC-induced stress fiber formation was achieved through the GEF-H1/RhoA/ROCK pathway.  相似文献   

5.
The p14ARF protein is a well‐known regulator of p53‐dependent and p53‐independent tumor‐suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo‐ and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C‐terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF. In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF. Genotoxic stress causes augmented interaction between PRMT1 and p14ARF, accompanied by arginine methylation of p14ARF. PRMT1‐dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53‐independent apoptosis. This PRMT1‐p14ARF cooperation is cancer‐relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1‐mediated arginine methylation is an important trigger for p14ARF’s stress‐induced tumor‐suppressive function.  相似文献   

6.
Host–pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these “molecular scars” as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.

Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. This study uses these “molecular scars” as a guide to identify a vertebrate-specific mitochondrial stress response circuit that interacts with the electron transport chain and is activated by stress signals such as interferon-gamma and hypoxia.  相似文献   

7.
Mosaic animals have provided the platform for many fundamental discoveries in developmental biology, cell biology, and other fields. Techniques to produce mosaic animals by mitotic recombination have been extensively developed in Drosophila melanogaster but are less common for other laboratory organisms. Here, we report mosaic analysis by gRNA-induced crossing-over (MAGIC), a new technique for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9. MAGIC efficiently produces mosaic clones in both somatic tissues and the germline of Drosophila. Further, by developing a MAGIC toolkit for 1 chromosome arm, we demonstrate the method’s application in characterizing gene function in neural development and in generating fluorescently marked clones in wild-derived Drosophila strains. Eliminating the need to introduce recombinase-recognition sites into the genome, this simple and versatile system simplifies mosaic analysis in Drosophila and can in principle be applied in any organism that is compatible with CRISPR/Cas9.

Analysis of mosaic animals has been crucial in developmental and cell biology; this study describes a versatile, simple, and likely widely-applicable technique, MAGIC (mosaic analysis by gRNA-induced crossing-over), for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9.  相似文献   

8.
Fluoride is everywhere in the environment, yet it is toxic to living things. How biological organisms detoxify fluoride has been unknown until recently. Fluoride-specific ion transporters in both prokaryotes (Fluoride channel; Fluc) and fungi (Fluoride Exporter; FEX) efficiently export fluoride to the extracellular environment. FEX homologs have been identified throughout the plant kingdom. Understanding the function of FEX in a multicellular organism will reveal valuable knowledge about reducing toxic effects caused by fluoride. Here, we demonstrate the conserved role of plant FEX (FLUORIDE EXPORTER) in conferring fluoride tolerance. Plant FEX facilitates the efflux of toxic fluoride ions from yeast cells and is required for fluoride tolerance in plants. A CRISPR/Cas9-generated mutation in Arabidopsis thaliana FEX renders the plant vulnerable to low concentrations (100-µM) of fluoride at every stage of development. Pollen is particularly affected, failing to develop even at extremely low levels of fluoride in the growth medium. The action of the FEX membrane transport protein is the major fluoride defense mechanism in plants.

Plants rely on a fluoride transporter to tolerate toxic fluoride ions.  相似文献   

9.
10.
The emerging tumor-on-chip (ToC) approaches allow to address biomedical questions out of reach with classical cell culture techniques: in biomimetic 3D hydrogels they partially reconstitute ex vivo the complexity of the tumor microenvironment and the cellular dynamics involving multiple cell types (cancer cells, immune cells, fibroblasts, etc.). However, a clear bottleneck is the extraction and interpretation of the rich biological information contained, sometime hidden, in the cell co-culture videos. In this work, we develop and apply novel video analysis algorithms to automatically measure the cytotoxic effects on human cancer cells (lung and breast) induced either by doxorubicin chemotherapy drug or by autologous tumor-infiltrating cytotoxic T lymphocytes (CTL). A live fluorescent dye (red) is used to selectively pre-stain the cancer cells before co-cultures and a live fluorescent reporter for caspase activity (green) is used to monitor apoptotic cell death. The here described open-source computational method, named STAMP (spatiotemporal apoptosis mapper), extracts the temporal kinetics and the spatial maps of cancer death, by localizing and tracking cancer cells in the red channel, and by counting the red to green transition signals, over 2–3 days. The robustness and versatility of the method is demonstrated by its application to different cell models and co-culture combinations. Noteworthy, this approach reveals the strong contribution of primary cancer-associated fibroblasts (CAFs) to breast cancer chemo-resistance, proving to be a powerful strategy to investigate intercellular cross-talks and drug resistance mechanisms. Moreover, we defined a new parameter, the ‘potential of death induction’, which is computed in time and in space to quantify the impact of dying cells on neighbor cells. We found that, contrary to natural death, cancer death induced by chemotherapy or by CTL is transmissible, in that it promotes the death of nearby cancer cells, suggesting the release of diffusible factors which amplify the initial cytotoxic stimulus.  相似文献   

11.
12.
13.
Many lysosome functions are determined by a lumenal pH of ∼5.0, including the activity of resident acid-activated hydrolases. Lysosome pH (pHlys) is often increased in neurodegenerative disorders and predicted to be decreased in cancers, making it a potential target for therapeutics to limit the progression of these diseases. Accurately measuring pHlys, however, is limited by currently used dyes that accumulate in multiple intracellular compartments and cannot be propagated in clonal cells for longitudinal studies or used for in vivo determinations. To resolve this limitation, we developed a genetically encoded ratiometric pHlys biosensor, pHLARE (pH Lysosomal Activity REporter), which localizes predominantly in lysosomes, has a dynamic range of pH 4.0 to 6.5, and can be stably expressed in cells. Using pHLARE we show decreased pHlys with inhibiting activity of the mammalian target of rapamycin complex 1 (mTORC1). Also, cancer cells from different tissue origins have a lower pHlys than untransformed cells, and stably expressing oncogenic RasV12 in untransformed cells is sufficient to decrease pHlys. pHLARE is a new tool to accurately measure pHlys for improved understanding of lysosome dynamics, which is increasingly considered a therapeutic target.  相似文献   

14.
Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6A and m5C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high‐throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR‐seq). Using CIGAR‐seq, we discovered NSUN6 as a novel mRNA m5C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non‐overlapping subsets of mRNA m5C sites and together contributed to almost all the m5C modification in mRNA. Finally, using m1A as an example, we demonstrated that CIGAR‐seq can be easily adapted for identifying regulators of other mRNA modification.  相似文献   

15.
16.
A forward genetic screening approach identified orf19.2500 as a gene controlling Candida albicans biofilm dispersal and biofilm detachment. Three-dimensional (3D) protein modeling and bioinformatics revealed that orf19.2500 is a conserved mitochondrial protein, structurally similar to, but functionally diverged from, the squalene/phytoene synthases family. The C. albicans orf19.2500 is distinguished by 3 evolutionarily acquired stretches of amino acid inserts, absent from all other eukaryotes except a small number of ascomycete fungi. Biochemical assays showed that orf19.2500 is required for the assembly and activity of the NADH ubiquinone oxidoreductase Complex I (CI) of the respiratory electron transport chain (ETC) and was thereby named NDU1. NDU1 is essential for respiration and growth on alternative carbon sources, important for immune evasion, required for virulence in a mouse model of hematogenously disseminated candidiasis, and for potentiating resistance to antifungal drugs. Our study is the first report on a protein that sets the Candida-like fungi phylogenetically apart from all other eukaryotes, based solely on evolutionary “gain” of new amino acid inserts that are also the functional hub of the protein.  相似文献   

17.
Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called ‘invasome’. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ‘Bep intracellular delivery’ (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal ‘filamentation induced by cAMP’ (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane.  相似文献   

18.
In Vol. 15, No. 6, July 20, 1932, page 620, in the first line under References, for J. Gen. Physiol., 1931–32, 15, 62, read J. Gen. Physiol., 1931–32, 15, 621.  相似文献   

19.
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5′ splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5′ splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.  相似文献   

20.
RNA–protein interactions are central to all gene expression processes and contribute to a variety of human diseases. Therapeutic approaches targeting RNA–protein interactions have shown promising effects on some diseases that are previously regarded as ‘incurable’. Here, we developed a fluorescent on-bead screening platform, RNA Pull-Down COnfocal NAnoscanning (RP-CONA), to identify RNA–protein interaction modulators in eukaryotic cell extracts. Using RP-CONA, we identified small molecules that disrupt the interaction between HuR, an inhibitor of brain-enriched miR-7 biogenesis, and the conserved terminal loop of pri-miR-7–1. Importantly, miR-7′s primary target is an mRNA of α-synuclein, which contributes to the aetiology of Parkinson’s disease. Our method identified a natural product quercetin as a molecule able to upregulate cellular miR-7 levels and downregulate the expression of α-synuclein. This opens up new therapeutic avenues towards treatment of Parkinson’s disease as well as provides a novel methodology to search for modulators of RNA–protein interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号