首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomas D. Seeley 《Oecologia》1978,32(1):109-118
Summary The feral honey bee queens (colonies) of central New York State (USA) show a K-type life history strategy. Their demographic characteristics include low early life mortality, low reproductive rate, long lifespan, high population stability and repeated reproductions. Identifying the life history strategy of these bees reveals the general pattern of selection for competitive ability, rather than productivity, which has shaped their societies. Selection for competitive power explains the adaptiveness (compared with alternatives found in many other insect societies) of the large perennial colonies, infrequent but expensive offspring, and efficient foraging which characterize the social organization of these bees.  相似文献   

2.
Nosemaceranae intensity (mean spores per bee) and prevalence (proportion of bees infected in a sample) were analyzed in honey bees of known ages. Sealed brood combs from five colonies were removed, emerging bees were marked with paint, released back into their colonies of origin, and collected as recently emerged (0-3 days old), as house bees (8-11 days old), and as foragers (22-25 days old). Fifty bees from each of the five colonies were processed individually at each collection date for the intensity and prevalence of N. ceranae infection. Using PCR and specific primers to differentiate Nosema species, N. ceranae was found to be the only species present during the experiment. At each collection age (recent emergence, house, forager) an additional sample from the inner hive cover (background bees=BG) of each colony was collected to compare the N. ceranae results of this sampling method, commonly used for Nosema spore quantification, to the samples comprised of marked bees of known ages. No recently emerged bees exhibited infection with N. ceranae. One house bee out of the 250 individuals analyzed (prevalence=0.4%) tested positive for N. ceranae, at an infection level of 3.35×10(6) spores. Infection levels were not statistically different between the recently emerged (mean=0 spores/bee) and house bees (mean=1.34×10(4) spores/bee) (P=0.99). Foragers exhibited the highest prevalence (8.3%) and infection intensity (mean=2.38×10(6) spores/bee), with a range of 0-8.72×10(7) spores in individual bees. The average infection level across all foragers was significantly higher than that of recently emerged bees (P=0.01) and house bees (P=0.01). Finally, the prevalence of Nosema in infected bees was found to be positively correlated with the infection intensity in the sample.  相似文献   

3.
4.
Hox genes are known to control the identity of serially repeated structures in arthropods and vertebrates. We analyzed the expression pattern of the Hox genes Deformed (Dfd), Sex combs reduced (Scr), Antennapedia (Antp), and Ultrabithorax/abdominal-A (Ubx/abd-A) from the honey bee Apis mellifera. We also cloned a cDNA with the complete coding region of the Antennapedia gene from Apis. Comparison with Antp proteins from other insect species revealed several regions of homology. The expression patterns of the isolated Hox genes from Apis showed that the original expression patterns of Dfd, Scr, and Antp appear between late blastoderm and early germ band stage in a temporal and spatial sequence. Each of them shows up as a belt, spanning approximately two segment anlagen, Dfd in the anterior gnathal region, Scr in the posterior gnathal and anterior thoracic region, and Antp in the thoracic region. Following expansion of the Antp domain in the abdomen as a gradient towards the posterior, Ubx/abd-A expression appears laterally in the abdomen. During gastrulation and in the germ band stage the domains of strong expression do not overlap any more, but touch each other. After gastrulation the borders of the expression domains partly correlate with parasegment and partly with segment boundaries. Laterally, gaps between the domain of each gene may show no expression of any of the genes examined. Received: 30 August 1999 / Accepted: 28 April 2000  相似文献   

5.
Midgut epithelial cells from healthy bees possessed numerous mitochondria, strands of endoplasmic reticulum, evenly distributed ribosomes, zymogen granules, and two kinds of lipid inclusions. In heavily infected midguts of honey bees, Apis mellifera, all epithelial cells were observed to be infected with Nosema apis. Cells of the entire midgut were packed with mature spores and, in some cases, mixed with immature stages. Spores were not found among cells of the brush border and basal infolding. Muscle cells and tracheal end cells of the midgut were not infected. The cytoplasm of the infected cell contained a large number of vacuoles, numerous large inclusion bodies, and aggregated ribosomes. Signs of extensive lysis were observed within the heavily infected cells, although the cell membranes were intact.  相似文献   

6.
7.
The economically most important honey bee species, Apis mellifera, was formerly considered to be parasitized by one microsporidian, Nosema apis. Recently, [Higes, M., Martín, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93-95] and [Huang, W.-F., Jiang, J.-H., Chen, Y.-W., Wang, C.-H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30-37] used 16S (SSU) rRNA gene sequences to demonstrate the presence of Nosema ceranae in A. mellifera from Spain and Taiwan, respectively. We developed a rapid method to differentiate between N. apis and N. ceranae based on PCR-RFLPs of partial SSU rRNA. The reliability of the method was confirmed by sequencing 29 isolates from across the world (N =9 isolates gave N. apis RFLPs and sequences, N =20 isolates gave N. ceranae RFLPs and sequences; 100% correct classification). We then employed the method to analyze N =115 isolates from across the world. Our data, combined with N =36 additional published sequences demonstrate that (i) N. ceranae most likely jumped host to A. mellifera, probably within the last decade, (ii) that host colonies and individuals may be co-infected by both microsporidia species, and that (iii) N. ceranae is now a parasite of A. mellifera across most of the world. The rapid, long-distance dispersal of N. ceranae is likely due to transport of infected honey bees by commercial or hobbyist beekeepers. We discuss the implications of this emergent pathogen for worldwide beekeeping.  相似文献   

8.
Nosema ceranae, a microsporidian parasite originally described in the Asian honey bee Apis cerana, has recently been found to be cross-infective and to also parasitize the European honey bee Apis mellifera. Since this discovery, many studies have attempted to characterize the impact of this parasite in A. mellifera honey bees. Nosema species can infect all colony members, workers, drones and queens, but the pathological effects of this microsporidium has been mainly investigated in workers, despite the prime importance of the queen, who monopolizes the reproduction and regulates the cohesion of the society via pheromones. We therefore analyzed the impact of N. ceranae on queen physiology. We found that infection by N. ceranae did not affect the fat body content (an indicator of energy stores) but did alter the vitellogenin titer (an indicator of fertility and longevity), the total antioxidant capacity and the queen mandibular pheromones, which surprisingly were all significantly increased in Nosema-infected queens. Thus, such physiological changes may impact queen health, leading to changes in pheromone production, that could explain Nosema-induced supersedure (queen replacement).  相似文献   

9.
Collins AM  Mazur P 《Cryobiology》2006,53(1):22-27
Improved methods for preservation of honey bee, Apis mellifera L., germplasm would be very welcome to beekeeping industry queen breeders. The introduction of two parasites and the emergence of an antibiotic resistant disease have increased demands for resistant stock. Techniques for artificial insemination of queens are available, and semen has been cryopreserved with limited success. However, cryopreservation of embryos for rearing queens would mesh well with current practices and also provide drones (haploid males). Eggs at five ages between twenty-four hours and sixty-two hours were exposed to 0, -6.6, and/or -15 degrees C for various times, and successful hatch measured. Honey bee embryos show chill sensitivity as do other insect embryos, and the rate of chill injury increases dramatically with decrease in holding temperature. The 48 h embryos in both groups showed the greatest tolerance to chilling, although 44 h embryos were only slightly less so.  相似文献   

10.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   

11.
Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries.  相似文献   

12.
Methods for collection and microbiological examination of feces of larval honey bees, Apis mellifera, are described. Feces collected on sterile agar were inoculated onto selective media, some of which were acidified to approximate more closely the pH of larval food and the larval gut. A total of 104 microbial isolates were obtained from fecal collections of 20 larvae, although the feces of 4 of these larvae contained no detectable microbes. Microorganisms isolated in order of frequency were Bacillus spp., Gram-variable pleomorphic bacteria (Achromobacter eurydice?), molds (primarily Penicillia), actinomycetes, Gram-negative bacterial rods, and yeasts. It appears that larvae can become inoculated with microorganisms which are found in adult bees and pollen from ingestion of contaminated food. However, evidence for a constant symbiotic microflora which could contribute significant amounts of biochemicals to larvae is lacking.  相似文献   

13.
1. Oxidative dissimilation has been studied in enzymes from the honey bee. Using mitochondria isolated from the thoraces, complete oxidation of most of the TCA cycle members has been shown. 2. The presence of the acetate-activating enzyme, citrate-condensing enzyme, isocitric dehydrogenase, alpha-ketoglutarate dehydrogenase, glucose-6-phosphate, and 6-phosphogluconic dehydrogenase has been demonstrated and the cofactor requirements established. 3. The oxidation of isocitric acid has been shown to be either non-specific for the D- or L-isomer, or the presence of a racemase is indicated. 4. The presence of the pentose cycle is indicated in the soluble portion of the thoracic homogenate.  相似文献   

14.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

15.
Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 bp deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.  相似文献   

16.
Summary Antennal hygroreceptors of the honey bee, Apis mellifera L., have been investigated electrophysiologically and the sensillum containing these receptors with SEM. Moist and dry hygroreceptors have been identified along with a thermal receptor in a specialized coeloconic sensillum. This sensillum comprises a cuticular, shallow depression (diameter; 4 ) having a central opening (1.4–1.5 m) and a mushroom-shaped protrusion (1.4–1.5 m) from the opening. The head of the protrusion is irregular in shape and is not perforated. This sensillum has been thus far referred to as a sensillum campaniformium (Dietz and Humphreys 1971), henceforth, it is referred to as a coelocapitular sensillum.The responses of both moist and dry hygroreceptors are of a phasic-tonic manner. Both receptors are antagonistic with respect to their responses to humidity; one responds with an increase in impulse frequency to rising humidity, the other to falling humidity. The humidity-response relationship is independent of stimulus flux.  相似文献   

17.
Two microsporidia species have been shown to infect Apis mellifera , Nosema apis and Nosema ceranae . This work present evidence that N. ceranae infection significantly suppresses the honey bee immune response, although this effect was not observed following infection with N. apis . Immune suppression would also increase susceptibility to other bee pathogens and senescence. Despite the importance of both Nosema species in honey bee health, there is no information about their effect on the bees' immune system and present results can explain the different virulence between both microsporida infecting honeybees.  相似文献   

18.
19.
This study examined the control of nosemosis caused by Nosema ceranae, one of the hard-to-control diseases of honey bees, using RNA interference (RNAi) technology. Double-stranded RNA (dsRNA) for RNAi application targeted the mitosome-related genes of N. ceranae. Among the various mitosome-related genes, NCER_100882, NCER_101456, NCER_100157, and NCER_100686 exhibited relatively low homologies with the orthologs of Apis mellifera. Four gene-specific dsRNAs were prepared against the target genes and applied to the infected A. mellifera to analyze Nosema proliferation and honey bee survival. Two dsRNAs specifics to NCER_101456 and NCER_100157 showed high inhibitory effects on spore production by exhibiting only 62% and 67%, respectively, compared with the control. In addition, these dsRNA treatments significantly rescued the honey bees from the fatal nosemosis. It was confirmed that the inhibition of Nosema spore proliferation and the increase in the survival rate of honey bees were resulted from a decrease in the expression level of each target gene by dsRNA treatment. However, dsRNA mixture treatment was no more effective than single treatments in the rescue from the nosemosis. It is expected that the four newly identified mitosome-related target genes in this study can be effectively used for nosemosis control using RNAi technology.  相似文献   

20.
Using electron microscopy, the pathogenesis of American foulbrood disease was followed from ingestion of Bacillus larvae spores by young, susceptible honey bee larvae to death of the host and sporulation of the pathogen. Interaction between the host peritrophic membrane and B. larvae vegetatives is described. Phagocytosis was demonstrated to be a mechanism of entry of pathogen into host midgut cells. No evidence of enzymatic digestion of peritrophic membrane or host-cell microvilli was found during the initial interaction of pathogen and host midgut cell, although eventual lysis of host gut cells may have been the result of enzymatic activity. Following entry of bacteria into the hemocoel, host death resulted from systemic bacteremia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号