首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.  相似文献   

2.
Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.  相似文献   

3.
自然选择理论认为生物个体或者种群在进化的过程中, 其基因或者性状、行为策略的选择一定是能够提高其适合度或者达到某个可期的“目标”。然而, 随着某个突变基因或者性状特征、行为策略在种群中扩散, 其期望收益将随着其在种群中分布的密度变化或环境改变而发生改变, 这就是适合度景观的悖论, 即静态的、固定可期望的收益可能因此而不存在。基于动态而非静态适合度景观的概念, 我们提出路径依赖的自然选择概念。路径依赖的自然选择过程中, 一个突变的基因或表型在某种环境下随机产生, 但是该基因或表型在某些特定环境下会产生正反馈。尤其是在正反馈与随机漂变的共同作用下, 多条路径的演化就可能发生, 并且其路径的形成将同时受到其种群进化历史过程和空间特征分布等因素的强烈影响。而在不同路径下, 由于观测维度、角度和尺度的不同, 适合度意义将因此而存在不同。在此意义下, 自然选择更可能选择路径频率而不是适合度大小。基于上述概念, 我们借鉴现代物理学中复函数的方法, 来描述多重动力对物种形成或者生物特征、种群进化等路径依赖的演化过程, 以期为同域物种、隐存种形成以及生物多样性演化提供解释机制。  相似文献   

4.
Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.  相似文献   

5.
N P Sharp  C M Vincent 《Heredity》2015,114(4):367-372
The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.  相似文献   

6.
Mutation is the primary source of variation in any organism. Without it, natural selection cannot operate and organisms cannot adapt to novel environments. Mutation is also generally a source of defect: many mutations are not neutral but cause fitness decreases in the organisms where they arise. In bacteria, another important source of variation is horizontal gene transfer. This source of variation can also cause beneficial or deleterious effects. Determining the distribution of fitness effects of mutations in different environments and genetic backgrounds is an active research field. In bacteria, knowledge of these distributions is key for understanding important traits. For example, for determining the dynamics of microorganisms with a high genomic mutation rate (mutators), and for understanding the evolution of antibiotic resistance, and the emergence of pathogenic traits. All of these characteristics are extremely relevant for human health both at the individual and population levels. Experimental evolution has been a valuable tool to address these questions. Here, we review some of the important findings of mutation effects in bacteria revealed through laboratory experiments.  相似文献   

7.
The role of mutations in evolution depends upon the distribution of their effects on fitness. This distribution is likely to depend on the environment. Indeed genotype‐by‐environment interactions are key for the process of local adaptation and ecological specialization. An important trait in bacterial evolution is antibiotic resistance, which presents a clear case of change in the direction of selection between environments with and without antibiotics. Here, we study the distribution of fitness effects of mutations, conferring antibiotic resistance to Escherichia coli, in benign and stressful environments without drugs. We interpret the distributions in the light of a fitness landscape model that assumes a single fitness peak. We find that mutation effects (s) are well described by a shifted gamma distribution, with a shift parameter that reflects the distance to the fitness peak and varies across environments. Consistent with the theoretical predictions of Fisher's geometrical model, with a Gaussian relationship between phenotype and fitness, we find that the main effect of stress is to increase the variance in s. Our findings are in agreement with the results of a recent meta‐analysis, which suggest that a simple fitness landscape model may capture the variation of mutation effects across species and environments.  相似文献   

8.
Populations experiencing similar selection pressures can sometimes diverge in the genetic architectures underlying evolved complex traits. We used RNA virus populations of large size and high mutation rate to study the impact of historical environment on genome evolution, thus increasing our ability to detect repeatable patterns in the evolution of genetic architecture. Experimental vesicular stomatitis virus populations were evolved on HeLa cells, on MDCK cells, or on alternating hosts. Turner and Elena (2000. Cost of host radiation in an RNA virus. Genetics. 156:1465-1470.) previously showed that virus populations evolved in single-host environments achieved high fitness on their selected hosts but failed to increase in fitness relative to their ancestor on the unselected host and that alternating-host-evolved populations had high fitness on both hosts. Here we determined the complete consensus sequence for each evolved population after 95 generations to gauge whether the parallel phenotypic changes were associated with parallel genomic changes. We also analyzed the patterns of allele substitutions to discern whether differences in fitness across hosts arose through true pleiotropy or the presence of not only a mutation that is beneficial in both hosts but also 1 or more mutations at other loci that are costly in the unselected environment (mutation accumulation [MA]). We found that ecological history may influence to what extent pleiotropy and MA contribute to fitness asymmetries across environments. We discuss the degree to which current genetic architecture is expected to constrain future evolution of complex traits, such as host use by RNA viruses.  相似文献   

9.
Studies of spatial variation in the environment have primarily focused on how genetic variation can be maintained. Many one-locus genetic models have addressed this issue, but, for several reasons, these models are not directly applicable to quantitative (polygenic) traits. One reason is that for continuously varying characters, the evolution of the mean phenotype expressed in different environments (the norm of reaction) is also of interest. Our quantitative genetic models describe the evolution of phenotypic response to the environment, also known as phenotypic plasticity (Gause, 1947), and illustrate how the norm of reaction (Schmalhausen, 1949) can be shaped by selection. These models utilize the statistical relationship which exists between genotype-environment interaction and genetic correlation to describe evolution of the mean phenotype under soft and hard selection in coarse-grained environments. Just as genetic correlations among characters within a single environment can constrain the response to simultaneous selection, so can a genetic correlation between states of a character which are expressed in two environments. Unless the genetic correlation across environments is ± 1, polygenic variation is exhausted, or there is a cost to plasticity, panmictic populations under a bivariate fitness function will eventually attain the optimum mean phenotype for a given character in each environment. However, very high positive or negative correlations can substantially slow the rate of evolution and may produce temporary maladaptation in one environment before the optimum joint phenotype is finally attained. Evolutionary trajectories under hard and soft selection can differ: in hard selection, the environments with the highest initial mean fitness contribute most individuals to the mating pool. In both hard and soft selection, evolution toward the optimum in a rare environment is much slower than it is in a common one. A subdivided population model reveals that migration restriction can facilitate local adaptation. However, unless there is no migration or one of the special cases discussed for panmictic populations holds, no geographical variation in the norm of reaction will be maintained at equilibrium. Implications of these results for the interpretation of spatial patterns of phenotypic variation in natural populations are discussed.  相似文献   

10.
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations—that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype–environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype–environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype–environment interaction would increase the amount of genetic variation maintained by mutation‐selection balance.  相似文献   

11.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

12.
Many plants are perennial, but most studies of inbreeding depression and mating system evolution focus on annuals. This paper extends a population genetic model of inbreeding depression due to recessive deleterious mutations to perennials. The model incorporates life history and mating system variation, and multiplicative selection across many genetic loci. In the absence of substantial mitotic mutation, perennials have higher mean fitness and lower, or even negative, inbreeding depression than annuals with the same mating system. As in annuals, self fertilization exposes deleterious recessive mutations to selection, increasing mean fitness and decreasing inbreeding depression. Including mitotic mutation decreases mean fitness while increasing inbreeding depression. Perenniality introduces a kind of selective sieve, such that strongly recessive mutations contribute disproportionately to mean fitness and inbreeding depression. In the presence of high mitotic mutation, this selective sieve may provide a mechanistic basis for high inbreeding depression observed in some long lived perennials. Without substantial mitotic mutation, it is difficult to reconcile genetically based models of inbreeding depression with the empirical generalization that perennials outcross while related annuals self fertilize.  相似文献   

13.
Mutational bias is a potentially important agent of evolution, but it is difficult to disentangle the effects of mutation from those of natural selection. Mutation-accumulation experiments, in which mutations are allowed to accumulate at very small population size, thus minimizing the efficiency of natural selection, are the best way to separate the effects of mutation from those of selection. Body size varies greatly among species of nematode in the family rhabditidae; mutational biases are both a potential cause and a consequence of that variation. We report data on the cumulative effects of mutations that affect body size in three species of rhabditid nematode that vary fivefold in adult size. Results are very consistent with previous studies of mutations underlying fitness in the same strains: two strains of Caenorhabditis briggsae decline in body size about twice as fast as two strains of C. elegans, with a concomitant higher point estimate of the genomic mutation rate; the confamilial Oscheius myriophila is intermediate. There is an overall mutational bias, such that mutations reduce size on average, but the bias appears consistent between species. The genetic correlation between mutations that affect size and those underlying fitness is large and positive, on average.  相似文献   

14.
The pattern (space versus time) and scale (relative to the lifetime of individuals) of environmental variation is thought to play a central role in governing the evolution of the ecological niche and the maintenance of genetic variance in fitness. To evaluate this idea, we serially propagated an initially genetically uniform population of the bacterium Pseudomonas fluorescens for a few hundred generations in environments that differed in both the pattern and scale at which two highly contrasted carbon substrates were experienced. We found that, contrary to expectations, populations often evolved into a single niche specialist adapted to the less-productive substrate in variable environments and that the genetic variance in fitness across different components of the environment was not generally higher in variable environments when compared with constant environments. We provide evidence to suggest that our results reflect a novel constraint on niche evolution imposed by the supply of beneficial mutations available to selection in variable environments.  相似文献   

15.
Mutation load is a key parameter in evolutionary theories, but relatively little empirical information exists on the mutation load of populations, or the elimination of this load through selection. We manipulated the opportunity for sexual selection within a mutation accumulation divergence experiment to determine how sexual selection on males affected the accumulation of mutations contributing to sexual and nonsexual fitness. Sexual selection prevented the accumulation of mutations affecting male mating success, the target trait, as well as reducing mutation load on productivity, a nonsexual fitness component. Mutational correlations between mating success and productivity (estimated in the absence of sexual selection) were positive. Sexual selection significantly reduced these fitness component correlations. Male mating success significantly diverged between sexual selection treatments, consistent with the fixation of genetic differences. However, the rank of the treatments was not consistent across assays, indicating that the mutational effects on mating success were conditional on biotic and abiotic context. Our experiment suggests that greater insight into the genetic targets of natural and sexual selection can be gained by focusing on mutational rather than standing genetic variation, and on the behavior of trait variances rather than means.  相似文献   

16.
Petrie M  Roberts G 《Heredity》2007,98(4):198-205
Here we show that sexual selection can have an effect on the rate of mutation. We simulated the fate of a genetic modifier of the mutation rate in a sexual population with and without sexual selection (modelled using a female choice mechanism). Female choice for 'good genes' should reduce variability among male subjects, leaving insufficient differences to maintain female preferences. However, female choice can actually increase genetic variability by supporting a higher mutation rate in sexually selected traits. Increasing the mutation rate will be selected against because of the resulting decline in mean fitness. However, it also increases the probability of rare beneficial mutations arising, and mating skew caused by female preferences for male subjects carrying those beneficials with few deleterious mutations ('good genes') can lead to a mutation rate above that expected under natural selection. A choice of two male subjects was sufficient for there to be a twofold increase in the mutation rate as opposed to a decrease found under random mating.  相似文献   

17.
A basic premise of conservation geneticists is that low levels of genetic variation are associated with fitness costs in terms of reduced survival and fecundity. These fitness costs may frequently vary with environmental factors and should increase under more stressful conditions. However, there is no consensus on how fitness costs associated with low genetic variation change under natural conditions in relation to the stressfulness of the environment. On the Swedish west coast, natterjack toad Bufo calamita populations show a strong population genetic structure and large variation in the amount of within-population genetic variation. We experimentally examined the survival of natterjack larvae from six populations with different genetic variation in three thermal environments corresponding to (a) the mean temperature of natural ponds (stable, laboratory), (b) a high temperature environment occurring in desiccating ponds (stable, laboratory) and (c) an outdoor treatment mimicking the natural, variable thermal conditions (fluctuating, semi-natural). We found that larvae in the outdoor treatment had poorer survival than larvae in the stable environments suggesting that the outdoor treatment was more stressful. Overall, populations with higher genetic variation had higher larval survival. However, a significant interaction between treatments and genetic variation indicated that fitness costs associated with low genetic variation were less severe in the outdoor treatment. Thus, we found no support for the hypothesis that fitness costs associated with low genetic variation increase under more stressful conditions. Our results suggest that natural thermal stress may mask fitness losses associated with low genetic variation in these populations.  相似文献   

18.
Mutations create novel genetic variants, but their contribution to variation in fitness and other phenotypes may depend on environmental conditions. Furthermore, natural environments may be highly heterogeneous. We assessed phenotypes associated with survival and reproductive success in over 30,000 plants representing 100 mutation accumulation lines of Arabidopsis thaliana across four temporal environments at a single field site. In each of the four assays, environmental variance was substantially larger than mutational variance. For some traits, whether mutational variance was significantly varied between seasons. The founder genotype had mean trait values near the mean of the distribution of the mutation accumulation lines in all field experiments. New mutations also contributed more phenotypic variation than would be predicted, given phenotypic and sequence‐level divergence among natural populations of A. thaliana. The combination of large environmental variance with a mean effect of mutation near zero suggests that mutations could contribute substantially to standing genetic variation.  相似文献   

19.
Longevity is modulated by a range of conserved genes in eukaryotes, but it is unclear how variation in these genes contributes to the evolution of longevity in nature. Mutations that increase life span in model organisms typically induce trade‐offs which lead to a net reduction in fitness, suggesting that such mutations are unlikely to become established in natural populations. However, the fitness consequences of manipulating longevity have rarely been assessed in heterogeneous environments, in which stressful conditions are encountered. Using laboratory selection experiments, we demonstrate that long‐lived, stress‐resistant Caenorhabditis elegans age‐1(hx546) mutants have higher fitness than the wild‐type genotype if mixed genotype populations are periodically exposed to high temperatures when food is not limited. We further establish, using stochastic population projection models, that the age‐1(hx546) mutant allele can confer a selective advantage if temperature stress is encountered when food availability also varies over time. Our results indicate that heterogeneity in environmental stress may lead to altered allele frequencies over ecological timescales and indirectly drive the evolution of longevity. This has important implications for understanding the evolution of life‐history strategies.  相似文献   

20.
One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that knowledge of the selective environment and the regulatory mechanisms important for growth and survival in that environment greatly increase the predictability of adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号