首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Interpretation of dental development of fossil hominids requires understanding of and comparison with the pattern and timing of dental development among living humans and pongids. We report the first study of crown and root calcification in the lower permanent molar teeth among chimpanzees (Pan troglodytes) of known chronological age. A series of 99 lateral head radiographs of 16 captive-born chimpanzees were analyzed. Radiographs were taken at irregular intervals throughout the entire postnatal period of dental development from birth to 13 years of age. Permanent mandibular molars were rated on an eight-point maturation scale from initial radiographic appearance through crown and root calcification and apical closure of the root canals. In addition, we were able to document initial crown calcification and completion, as well as root completion and apical closure in incisors, canines, and premolars. Our results show several differences from the widely cited developmental schedule for pongid dentitions of Dean and Wood (Folia Primatol. 36:111–127, 1981). We found a much greater degree of temporal overlap in calcification of the crowns of adjacent molars, a pattern very unlike that usually seen in human dental development, which is characterized by delays between the onset of crown calcification in the molar series. Also, the ages and durations of crown and root formation in our chimp sample differ from the estimates proposed by Dean and Wood. By more clearly establishing the nature of developmental schedules and the timing of major events in the pongid dentition, these results should aid in the ongoing controversies concerning the human or pongid nature of dental development among Plio-Pleistocene hominids.  相似文献   

3.
4.
Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.  相似文献   

5.
It is widely agreed that humans have specific abilities for cooperation and culture that evolved since their split with their last common ancestor with chimpanzees. Many uncertainties remain, however, about the exact moment in the human lineage when these abilities evolved. This article argues that cooperation and culture did not evolve in one step in the human lineage and that the capacity to stick to long-term and risky cooperative arrangements evolved before properly modern culture. I present evidence that Homo heidelbergensis became increasingly able to secure contributions form others in two demanding Paleolithic public good games (PPGGs): cooperative feeding and cooperative breeding. I argue that the temptation to defect is high in these PPGGs and that the evolution of human cooperation in Homo heidelberngensis is best explained by the emergence of modern-like abilities for inhibitory control and goal maintenance. These executive functions are localized in the prefrontal cortex and allow humans to stick to social norms in the face of competing motivations. This scenario is consistent with data on brain evolution that indicate that the largest growth of the prefrontal cortex in human evolution occurred in Homo heidelbergensis and was followed by relative stasis in this part of the brain. One implication of this argument is that subsequent behavioral innovations, including the evolution of symbolism, art, and properly cumulative culture in modern Homo sapiens, are unlikely to be related to a reorganization of the prefrontal cortex, despite frequent claims to the contrary in the literature on the evolution of human culture and cognition.  相似文献   

6.
Adolescence is a highly dynamic period of development, which includes the final organizational phases of neural maturation within the prefrontal cortex (PFC). The organizational events of neural pruning and myelination occur in a sex‐specific manner, potentially giving rise to the disparities in mood disorders in adulthood. Because of the extended developmental time period of the PFC, environmental insults, including psychosocial stressors, may play a major role in steering the maturation of this region. In this review, the literature surrounding the sex specific alterations that occur in the PFC in rodent models following adolescent stress will be discussed. This will be complimented by a brief review on the state of human research in PFC sex differences in the development of white matter and cytoarchitecture across the lifespan. Taken together, the impact of developmental psychosocial stress on the circuitry of the PFC and resulting adult phenotypes will be summarized with a focus on the importance of considering sex differences in order to build a better understanding of developmental influences on adult disorders.  相似文献   

7.
A comparison of developmental patterns of white matter (WM) within the prefrontal region between humans and nonhuman primates is key to understanding human brain evolution. WM mediates complex cognitive processes and has reciprocal connections with posterior processing regions [1, 2]. Although the developmental pattern of prefrontal WM in macaques differs markedly from that in humans [3], this has not been explored in our closest evolutionary relative, the chimpanzee. The present longitudinal study of magnetic resonance imaging scans demonstrated that the prefrontal WM volume in chimpanzees was immature and had not reached the adult value during prepuberty, as observed in humans but not in macaques. However, the rate of prefrontal WM volume increase during infancy was slower in chimpanzees than in humans. These results suggest that a less mature and more protracted elaboration of neuronal connections in the prefrontal portion of the developing brain existed in the last common ancestor of chimpanzees and humans, and that this served to enhance the impact of postnatal experiences on neuronal connectivity. Furthermore, the rapid development of the human prefrontal WM during infancy may help the development of complex social interactions, as well as the acquisition of experience-dependent knowledge and skills to shape neuronal connectivity.  相似文献   

8.
Previous morphological studies indicated that development of the human prefrontal cortex (PFC) appears to continue into late adolescence. Although functional brain imaging studies have sought to determine the time course of functional development of the PFC, it is unclear whether the developmental change occurs after adolescence to adulthood and when it achieves a peak because of the narrow or discontinuous range in the participant's age. Moreover, previous functional studies have not focused on the anterior frontal region, that is, the frontopolar regions (BA9/10). Thus, the present study investigated the developmental change in frontopolar PFC activation associated with letter fluency task by using near-infrared spectroscopy (NIRS), in subjects from preschool children to adults. We analyzed the relative concentration of hemoglobin (ΔHb) in the prefrontal cortex measured during the activation task in 48 typically-developing children and adolescents and 22 healthy adults. Consistent with prior morphological studies, we found developmental change with age in the children/adolescents. Moreover, the average Δoxy-Hb in adult males was significantly larger than that in child/adolescent males, but was not true for females. These data suggested that functional development of the PFC continues into late adolescence. Although the developmental change of the frontopolar PFC was independent of gender from childhood to adolescence, in adulthood a gender difference was shown.  相似文献   

9.
The vasopressin system has been implicated in the regulation of social behavior and cognition in humans, nonhuman primates and other social mammals. In chimpanzees, polymorphisms in the vasopressin V1a receptor gene (AVPR1A) have been associated with social dimensions of personality, as well as to responses to sociocommunicative cues and mirror self‐recognition. Despite evidence of this association with social cognition and behavior, there is little research on the neuroanatomical correlates of AVPR1A variation. In the current study, we tested the association between AVPR1A polymorphisms in the RS3 promotor region and gray matter covariation in chimpanzees using magnetic resonance imaging and source‐based morphometry. The analysis identified 13 independent brain components, three of which differed significantly in covariation between the two AVPR1A genotypes (DupB?/? and DupB+/?; P < .05). DupB+/? chimpanzees showed greater covariation in gray matter in the premotor and prefrontal cortex, basal forebrain, lunate and cingulate cortex, and lesser gray matter covariation in the superior temporal sulcus and postcentral sulcus. Some of these regions were previously found to differ in vasopressin and oxytocin neural fibers between nonhuman primates, and in AVPR1A gene expression in humans with different RS3 alleles. This is the first report of an association between AVPR1A and gray matter covariation in nonhuman primates, and specifically links an AVPR1A polymorphism to structural variation in the social brain network. These results further affirm the value of chimpanzees as a model species for investigating the relationship between genetic variation, brain structure and social cognition with relevance to psychiatric disorders, including autism.  相似文献   

10.
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.  相似文献   

11.
Individual variability in delay of gratification (DG) is associated with a number of important outcomes in both non-human and human primates. Using diffusion tensor imaging (DTI), this study describes the relationship between probabilistic estimates of white matter tracts projecting from the caudate to the prefrontal cortex (PFC) and DG abilities in a sample of 49 captive chimpanzees (Pan troglodytes). After accounting for time between collection of DTI scans and DG measurement, age and sex, higher white matter connectivity between the caudate and right dorsal PFC was found to be significantly associated with the acquisition (i.e. training phase) but not the maintenance of DG abilities. No other associations were found to be significant. The integrity of white matter connectivity between regions of the striatum and the PFC appear to be associated with inhibitory control in chimpanzees, with perturbations on this circuit potentially leading to a variety of maladaptive outcomes. Additionally, results have potential translational implications for understanding the pathophysiology of a number of psychiatric and clinical outcomes in humans.  相似文献   

12.
A growing body of evidence suggests that mitochondrial function may be important in brain development and psychiatric disorders. However, detailed expression profiles of those genes in human brain development and fear-related behavior remain unclear. Using microarray data available from the public domain and the Gene Ontology analysis, we identified the genes and the functional categories associated with chronological age in the prefrontal cortex (PFC) and the caudate nucleus (CN) of psychiatrically normal humans ranging in age from birth to 50 years. Among those, we found that a substantial number of genes in the PFC (115) and the CN (117) are associated with the GO term: mitochondrion (FDR qv <0.05). A greater number of the genes in the PFC (91%) than the genes in the CN (62%) showed a linear increase in expression during postnatal development. Using quantitative PCR, we validated the developmental expression pattern of four genes including monoamine oxidase B (MAOB), NADH dehydrogenase flavoprotein (NDUFV1), mitochondrial uncoupling protein 5 (SLC25A14) and tubulin beta-3 chain (TUBB3). In mice, overall developmental expression pattern of MAOB, SLC25A14 and TUBB3 in the PFC were comparable to the pattern observed in humans (p<0.05). However, mice selectively bred for high fear did not exhibit normal developmental changes of MAOB and TUBB3. These findings suggest that the genes associated with mitochondrial function in the PFC play a significant role in brain development and fear-related behavior.  相似文献   

13.
Serotonin and its receptors (HTRs) play critical roles in brain development and in the regulation of cognition, mood, and anxiety. HTRs are highly expressed in human prefrontal cortex and exert control over prefrontal excitability. The serotonin system is a key treatment target for several psychiatric disorders; however, the effectiveness of these drugs varies according to age. Despite strong evidence for developmental changes in prefrontal Htrs of rodents, the developmental regulation of HTR expression in human prefrontal cortex has not been examined. Using postmortem human prefrontal brain tissue from across postnatal life, we investigated the expression of key serotonin receptors with distinct inhibitory (HTR1A, HTR5A) and excitatory (HTR2A, HTR2C, HTR4, HTR6) effects on cortical neurons, including two receptors which appear to be expressed to a greater degree in inhibitory interneurons of cerebral cortex (HTR2C, HTR6). We found distinct developmental patterns of expression for each of these six HTRs, with profound changes in expression occurring early in postnatal development and also into adulthood. However, a collective look at these HTRs in terms of their likely neurophysiological effects and major cellular localization leads to a model that suggests developmental changes in expression of these individual HTRs may not perturb an overall balance between inhibitory and excitatory effects. Examining and understanding the healthy balance is critical to appreciate how abnormal expression of an individual HTR may create a window of vulnerability for the emergence of psychiatric illness.  相似文献   

14.
Compared to our closest living and extinct relatives, humans have a large, specialized, and complex brain embedded in a uniquely shaped braincase. Here, we quantitatively compare endocranial shape changes during ontogeny in humans and chimpanzees. Identifying shared and unique aspects in developmental patterns of these two species can help us to understand brain evolution in the hominin lineage.Using CT scans of 58 humans and 60 chimpanzees varying in age from birth to adulthood, we generated virtual endocasts to measure and analyze 29 three-dimensional endocranial landmarks and several hundred semilandmarks on curves and the endocranial surface; these data were then analyzed using geometric morphometric methods.The ontogenetic shape trajectories are nonlinear for both species, which indicates several developmental phases. Endocranial shape is already distinct at birth and there is no overlap between the two species throughout ontogeny. While some aspects of the pattern of endocranial shape change are shared between humans and chimpanzees, the shape trajectories differ substantially directly after birth until the eruption of the deciduous dentition: in humans but not in chimpanzees, the parietal and cerebellar regions expand relatively (contributing to neurocranial globularity) and the cranial base flexes within the first postnatal year when brain growth rates are high. We show that the shape changes associated with this early “globularization phase” are unique to humans and do not occur in chimpanzees before or after birth.  相似文献   

15.
By comparing species-specific developmental patterns, we can approach the question of how development shapes adult morphology and contributes to the evolution of novel forms. Studies of evolutionary changes to brain development in primates can provide important clues about the emergence of human cognition, but are hindered by the lack of preserved neural tissue in the fossil record. As a proxy, we study the shape of endocasts, virtual imprints of the endocranial cavity, using 3D geometric morphometrics. We have previously demonstrated that the pattern of endocranial shape development is shared by modern humans, chimpanzees and Neanderthals after the first year of life until adulthood. However, whether this represents a common hominoid mode of development is unknown. Here, we present the first characterization and comparison of ontogenetic endocranial shape changes in a cross-sectional sample of modern humans, chimpanzees, gorillas, orangutans and gibbons. Using developmental simulations, we demonstrate that from late infancy to adulthood ontogenetic trajectories are similar among all hominoid species, but differ in the amount of shape change. Furthermore, we show that during early ontogeny gorillas undergo more pronounced shape changes along this shared trajectory than do chimpanzees, indicative of a dissociation of size and shape change. As shape differences between species are apparent in even our youngest samples, our results indicate that the ontogenetic trajectories of extant hominoids diverged at an earlier stage of ontogeny but subsequently converge following the eruption of the deciduous dentition.  相似文献   

16.
Reconstruction of life history variables of fossil hominids on the basis of dental development requires understanding of and comparison with the pattern and timing of dental development among both living humans and pongids. Whether dental development among living apes or humans provides a better model for comparison with that of Plio-Pleistocene hominids of the genus Australopithecus remains a contentious point. This paper presents new data on chimpanzees documenting developmental differences in the dentitions of modern humans and apes and discusses their significance in light of recent controversies over the human or pongid nature of australopithecine dental development. Longitudinal analysis of 299 lateral head radiographs from 33 lab-reared chimpanzees (Pan troglodytes) of known chronological age allows estimation of means and standard deviations for the age at first appearance of 8 developmental stages in the mandibular molar dentition. Results are compared with published studies of dental development among apes and with published standards for humans. Chimpanzees are distinctly different from humans in two important aspects of dental development. Relative to humans, chimpanzees show advanced molar development vis a vis anterior tooth development, and chimpanzees are characterized by temporal overlap in the calcification of adjacent molar crowns, while humans show moderate to long temporal gaps between the calcification of adjacent molar crowns. In combination with recent work on enamel incremental markers and CAT scans of developing dentitions of Plio-Pleistocene hominids, this evidence supports an interpretation of a rapid, essentially “apelike” ontogeny among australopithecines. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The past two decades have witnessed tremendous advances in noninvasive and postmortem neuroscientific techniques, advances that have made it possible, for the first time, to compare in detail the organization of the human brain to that of other primates. Studies comparing humans to chimpanzees and other great apes reveal that human brain evolution was not merely a matter of enlargement, but involved changes at all levels of organization that have been examined. These include the cellular and laminar organization of cortical areas; the higher order organization of the cortex, as reflected in the expansion of association cortex (in absolute terms, as well as relative to primary areas); the distribution of long-distance cortical connections; and hemispheric asymmetry. Additionally, genetic differences between humans and other primates have proven to be more extensive than previously thought, raising the possibility that human brain evolution involved significant modifications of neurophysiology and cerebral energy metabolism.  相似文献   

18.
This study combines traditional methods of assessing dental developmental status based upon modern human standards with new techniques based upon histological observations in order to reassess the age at death of the Gibraltar child from Devil's Tower. The results indicate that the most likely age of this individual at death was 3 years of age. This result is in agreement with an independent assessment of the age of the temporal bone of this specimen (Tillier, AM [1982] Z. Morphol. Anthropol. 73:125-148) and is concordant with dental developmental ages given for modern humans. Moreover, the fact that this specimen appears at the low end of the age scale for calcification stages in modern humans is also supportive of the findings of Legoux (Legoux, P [1970] Arch. Inst. Paleontol. Hum. Mem. 33:53-87) and Wolpoff (Wolpoff, MH [1979] Am. J. Phys. Anthropol. 50:67-114) that dental eruption schedules in Neanderthals were also accelerated. If the cranial bones from Devil's Tower are associated with the dental material, as we believe, they indicate a remarkably precocious brain growth in this individual, which is consistent with what is known about general growth and development in Neanderthals.  相似文献   

19.
Studying genetic mechanisms underlying primate brain morphology can provide insight into the evolution of human brain structure and cognition. In humans, loss‐of‐function mutations in the gene coding for ASPM (Abnormal Spindle Microtubule Assembly) have been associated with primary microcephaly, which is defined by a significantly reduced brain volume, intellectual disability and delayed development. However, less is known about the effects of common ASPM variation in humans and other primates. In this study, we characterized the degree of coding variation at ASPM in a large sample of chimpanzees (N = 241), and examined potential associations between genotype and various measures of brain morphology. We identified and genotyped five non‐synonymous polymorphisms in exons 3 (V588G), 18 (Q2772K, K2796E, C2811Y) and 27 (I3427V). Using T1‐weighted magnetic resonance imaging of brains, we measured total brain volume, cerebral gray and white matter volume, cerebral ventricular volume, and cortical surface area in the same chimpanzees. We found a potential association between ASPM V588G genotype and cerebral ventricular volume but not with the other measures. Additionally, we found that chimpanzee, bonobo, and human lineages each independently show a signature of accelerated ASPM protein evolution. Overall, our results suggest the potential effects of ASPM variation on cerebral cortical development, and emphasize the need for further functional studies. These results are the first evidence suggesting ASPM variation might play a role in shaping natural variation in brain structure in nonhuman primates.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) evolved via cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees (Pan troglodytes). Chimpanzees, like humans, are susceptible to infection by HIV-1. However, unlike humans, infected chimpanzees seldom develop immunodeficiency when infected with SIVcpz or HIV-1. SIVcpz and most strains of HIV-1 require the cell-surface receptor CC chemokine receptor 5 (CCR5) to infect specific leukocyte subsets, and, subsequent to infection, the level of CCR5 expression influences the amount of HIV-1 entry and the rate of HIV-1 replication. Evidence that variants in the 5' cis-regulatory region of CCR5 (5'CCR5) affect disease progression in humans suggests that variation in CCR5 might also influence the response of chimpanzees to HIV-1/SIVcpz. To determine whether patterns of genetic variation at 5'CCR5 in chimpanzees are similar to those in humans, we analyzed patterns of DNA sequence variation in 37 wild-born chimpanzees (26 P. t. verus, 9 P. t. troglodytes, and 2 P. t. schweinfurthii), along with previously published 5'CCR5 data from 112 humans and 50 noncoding regions in the human and chimpanzee genomes. These analyses revealed that patterns of variation in 5'CCR5 differ dramatically between chimpanzees and humans. In chimpanzees, 5'CCR5 was less diverse than 80% of noncoding regions and was characterized by an excess of rare variants. In humans, 5'CCR5 was more diverse than 90% of noncoding regions and had an excess of common variants. Under a wide range of demographic histories, these patterns suggest that, whereas human 5'CCR5 has been subject to balancing selection, chimpanzee 5'CCR5 has been influenced by a selective sweep. This result suggests that chimpanzee 5'CCR5 might harbor or be linked to functional variants that influence chimpanzee resistance to disease caused by SIVcpz/HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号