首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Theropoda was one of the most successful dinosaurian clades during the Mesozoic and has remained a dominant component of faunas throughout the Cenozoic, with nearly 10,000 extant representatives. The discovery of Archaeopteryx provides evidence that avian theropods evolved at least 155 million years ago and that more than half of the tenure of avian theropods on Earth was during the Mesozoic. Considering the major changes in niche occupation for theropods resulting from the evolution of arboreal and flight capabilities, we have analyzed forelimb and hindlimb proportions among nonmaniraptoriform theropods, nonavian maniraptoriforms, and basal avialans using reduced major axis regressions, principal components analysis, canonical variates analysis, and discriminant function analysis. Our study is the first analysis on theropod limb proportions to apply phylogenetic independent contrasts and size corrections to the data to ensure that all the data are statistically independent and amenable to statistical analyses. The three ordination analyses we performed did not show any significant groupings or deviations between nonavian theropods and Mesozoic avian forms when including all limb elements. However, the bivariate regression analyses did show some significant trends between individual elements that suggested evolutionary trends of increased forelimb length relative to hindlimb length from nonmaniraptoriform theropods to nonavian maniraptoriforms to basal avialans. The increase in disparity and divergence away from the nonavian theropod body plan is well documented within Cenozoic forms. The lack of significant groupings among Mesozoic forms when examining the entire theropod body plan concurrently suggests that nonavian theropods and avian theropods did not substantially diverge in limb proportions until the Cenozoic. J. Morphol. 276:152–166, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Chan, N.R., Dyke, G.J. & Benton, M.J. 2013: Primary feather lengths may not be important for inferring the flight styles of Mesozoic birds. Lethaia, Vol. 46, pp. 146–152. Although many Mesozoic fossil birds have been found with primary feathers preserved, these structures have rarely been included in morphometric analyses. This is surprising because the flight feathers of modern birds can contribute approximately 50% of the total wing length, and so it would be assumed that their inclusion or exclusion would modify functional interpretations. Here we show, contrary to earlier work, that this may not be the case. Using forelimb measurements and primary feather lengths from Mesozoic birds, we constructed morphospaces for different clades, which we then compared with morphospaces constructed for extant taxa classified according to flight mode. Consistent with older work, our results indicate that among extant birds some functional flight groups can be distinguished on the basis of their body sizes and that variation in the relative proportions of the wing elements is conservative. Mesozoic birds, on the other hand, show variable proportions of wing bones, with primary feather length contribution to the wing reduced in the earlier diverging groups. We show that the diverse Mesozoic avian clade Enantiornithes overlaps substantially with extant taxa in both size and limb element proportions, confirming previous morphometric results based on skeletal elements alone. However, these measurements cannot be used to distinguish flight modes in extant birds, and so cannot be used to infer flight mode in fossil forms. Our analyses suggest that more data from fossil birds, combined with accurate functional determination of the flight styles of living forms is required if we are to be able to predict the flight modes of extinct birds. □Birds, flight, morphospace, Mesozoic, wing.  相似文献   

3.
Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur–bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous–Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity.  相似文献   

4.
The limb proportions of the extinct flying pterosaurs were clearly distinct from their living counterparts, birds and bats. Within pterosaurs, however, we show that further differences in limb proportions exist between the two main groups: the clade of short-tailed Pterodactyloidea and the paraphyletic clades of long-tailed rhamphorhynchoids. The hindlimb to forelimb ratios of rhamphorhynchoid pterosaurs are similar to that seen in bats, whereas those of pterodactyloids are much higher. Such a clear difference in limb ratios indicates that the extent of the wing membrane in rhamphorhynchoids and pterodactyloids may also have differed; this is borne out by simple ternary analyses. Further, analyses also indicate that the limbs of Sordes pilosus, a well-preserved small taxon used as key evidence for inferring the extent and shape of the wing membrane in all pterosaurs, are not typical even of its closest relatives, other rhamphorhynchoids. Thus, a bat-like extensive hindlimb flight membrane, integrated with the feet and tail may be applicable only to a small subset of pterosaur diversity. The range of flight morphologies seen in these extinct reptiles may prove much broader than previously thought.  相似文献   

5.
Theropod forelimb design and evolution   总被引:4,自引:1,他引:3  
We examined the relationship between forelimb design and function across the 230-million-year history of theropod evolution. Forelimb disparity was assessed by plotting the relative contributions of the three main limb elements on a ternary diagram. Theropods were divided into five functional groups: predatory, reduced, flying, wing-propelled diving, and flighdess. Forelimbs which maintained their primitive function, predation, are similarly proportioned, but non-avian theropods with highly reduced forelimbs have relatively longer humeri. Despite the dramatically different forces imparted by the evolution of flight, forelimb proportions of basal birds are only slighdy different from those of their non-avian relatives. An increase in disparity accompanied the subsequent radiation of birds. Each transition to flightlessness has been accompanied by an increase in relative humeral length, which results from relatively short distal limb elements. We introduce theoretical predictions based on five biomechanical and developmental factors that may have influenced the evolution of theropod limb proportions.  相似文献   

6.
Morphometric and stratigraphic analyses that encompass the known fossil record of enantiornithine birds (Enantiornithes) are presented. These predominantly flighted taxa were the dominant birds of the second half of the Mesozoic; the enantiornithine lineage is known to have lasted for at least 60 million years (Ma), up until the end of the Cretaceous. Analyses of fossil record dynamics show that enantiornithine 'collectorship' since the 1980s approaches an exponential distribution, indicating that an asymptote in proportion of specimens has yet to be achieved. Data demonstrate that the fossil record of enantiornithines is complete enough for the extraction of biological patterns. Comparison of the available fossil specimens with a large data set of modern bird (Neornithes) limb proportions also illustrates that the known forelimb proportions of enantiornithines fall within the range of extant taxa; thus these birds likely encompassed the range of flight styles of extant birds. In contrast, most enantiornithines had hindlimb proportions that differ from any extant taxa. To explore this, ternary diagrams are used to graph enantiornithine limb variation and to identify some morphological oddities ( Otogornis , Gobipteryx ); taxa not directly comparable to modern birds. These exceptions are interesting – although anatomically uniform, and similar to extant avians in their wing proportions, some fossil enantiornithines likely had flight styles not seen among their living counterparts.  相似文献   

7.
Abstract Although pterosaurs are a well‐known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon‐specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased – this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.  相似文献   

8.
The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.  相似文献   

9.
All living birds are toothless, constituting by far the most diverse toothless vertebrate clade, and are striking examples of evolutionary success following tooth loss. In recent years, an unprecedented number of Mesozoic birds have been described, illustrating the evolution of dentition reductions. Simultaneously, major advances in experimental embryology have yielded new results concerning avian edentulism. Reviewing these lines of evidence, we propose hypotheses for its causes, with a prominent role for the horny beak during development. A horny beak and a muscular gizzard functionally 'replaced' dentition for food acquisition and processing, respectively. Together with edentulism itself, these features and others contributed to the later success of birds, as a result of their high performance or additional functionality working in concert in these complex organisms.  相似文献   

10.
The avian digestive system, like other aspects of avian biology, is highly modified relative to other reptiles. Together these modifications have imparted the great success of Neornithes, the most diverse clade of amniotes alive today. It is important to understand when and how aspects of the modern avian digestive system evolved among neornithine ancestors in order to elucidate the evolutionary success of this important clade and to understand the biology of stem birds and their closest dinosaurian relatives: Mesozoic Paraves. Although direct preservation of the soft tissue of the digestive system has not yet been reported, ingested remains and their anatomical location preserved in articulated fossils hint at the structure of the digestive system and its abilities. Almost all data concerning direct evidence of diet in Paraves comes from either the Upper Jurassic Yanliao Biota or the Lower Cretaceous Jehol Biota, both of which are known from deposits in north-eastern China. Here, the sum of the data gleaned from the thousands of exceptionally well-preserved fossils of paravians is interpreted with regards to the structure and evolution of the highly modified avian digestive system and feeding apparatus. This information suggests intrinsic differences between closely related stem lineages implying either strong homoplasy or that diet in each lineage of non-ornithuromorph birds was highly specialized. Regardless, modern digestive capabilities appear to be limited to the Ornithuromorpha, although the complete set of derived feeding related characters is restricted to the Neornithes.  相似文献   

11.
Nephrin, a major intercellular junction (ICJ) molecule of mammalian podocytes in the renal glomerulus, is absent in the avian genome. We hypothesized that birds use ICJ molecules other than nephrin in their podocytes. Therefore, in the present study, we examined the possible involvement of adherens junction (AJ) proteins in the ICJs of avian podocytes. We found the AJ proteins N-cadherin and α- and β-catenins in podocytes of quail and chickens but not in those of rats, pigs or humans. The AJ proteins were prominent in avian glomerulus-rich fractions in immunoblot analyses, and in immunofluorescence microscopy analyses, they were localized along glomerular capillary walls appearing in at least two staining patterns: weakly diffuse and distinctly granular. Immunoelectron microscopy demonstrated that the significant accumulation of immunogold particles for the AJ proteins were especially evident in avian slit diaphragms and AJs. Furthermore, N-cadherin was found to be expressed in all nephron cells in the early developmental stage but became confined to podocytes during maturation. These results indicate that avian slit diaphragms clearly express AJ proteins as compared with that in the mammal—where AJ proteins are suppressed to an extremely low level—and that avian podocytes are interconnected by AJs per se in addition to slit diaphragms.  相似文献   

12.
Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.  相似文献   

13.
通过对18目59科137例现生不同栖息习性鸟类的后肢3块骨骼(股骨、胫跗骨和跗跖骨)长度比例的观察和特征分析,推断出鸟类的栖息习性与后肢3块骨骼中各骨骼长度所占总长度的比例存在密切的关系。即在所有鸟类的后肢骨骼中,胫跗骨的长度占3块骨骼的比例为最大;地栖鸟类后肢骨骼中股骨的长度要短于跗跖骨;树栖鸟类后肢骨骼中股骨的长度要长于跗跖骨。鸟类后肢3块骨骼的长度比例特征是鸟类长期对栖息等行为适应的结果。在此基础上,对中国中生代14例鸟类的栖息习性进行了分析,利用三元投影的统计方法,并以国内外新生代(古近纪和新近纪)21例鸟类标本作为对比参考,得出辽西中生代不同类型鸟类的栖息行为特征:基干鸟类以树栖为主要习性,其中个别鸟类还具有攀援的习性,而反鸟类则是典型的树栖鸟类,今鸟类兼有树、地栖的习性。研究表明,在现行的鸟类系统发育框架下,树栖适应(及攀援)代表了鸟类演化历史中最原始的生活方式。这一结论也支持鸟类飞行的树栖起源假说。中生代鸟类栖息习性分异的多样性反映了早期鸟类演化过程中自身以及与其他同期生物在生态空间和食物资源的竞争的加剧和对环境的不断适应。  相似文献   

14.
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well‐studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end‐Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the “halfway point” of avian evolution, I have been able to test how well extant‐only methods predict the diversity of fossil forms. All extant‐only methods underestimate the disparity, although the ratio of within‐ to between‐clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit.  相似文献   

15.
The study of the relationship between disparity (occupied morphospace) and diversity (number of taxa) through geological time represents a powerful tool in the macroevolutionary study of groups. In this contribution, this approach is applied for the first time to the cyrtocrinid crinoids, a major clade of mostly Mesozoic articulate crinoids also represented by rare Cenozoic forms (two extant taxa). The analysis of disparity identified two separate evolutionary radiations for cyrtocrinids with maximum morphospace exploration, one at the beginning of the evolutionary history of the group in the Pliensbachian and a second one between the Late Jurassic and Early Cretaceous. On the methodological level, the disparity measured both as total variance and as sum of ranges shows compatible results, with trends well coupled to the diversity curve indicating that, in cyrtocrinid crinoids, an increase or decrease in the number of taxa in the history of the clade corresponds a proportional increase and decrease also in the occupied morphospace. The curves obtained were interpreted in the light of the clade's phylogeny, major oceanographic events, newly available ecological niches and relative key innovations, which would be able to increase the fitness of the group. The group diversity was already in decline starting from the Aptian, and the mass extinction at the K‐PG boundary had no effect on the history of the clade. The results show once again the importance and potential of diversity/disparity studies when put into the light of palaeotectonic, palaeoecological and palaeoenvironmental factors.  相似文献   

16.
Mesozoic crurotarsans exhibited diverse morphologies and feeding modes, representing considerable ecological diversity, yet macroevolutionary patterns remain unexplored. Here, we use a unique combination of morphological and biomechanical disparity metrics to quantify the ecological diversity and trophic radiations of Mesozoic crurotarsans, using the mandible as a morpho-functional proxy. We recover three major trends. First, the diverse assemblage of Late Triassic crurotarsans was morphologically and biomechanically disparate, implying high levels of ecological variation; but, following the end-Triassic extinction, disparity declined. Second, the Jurassic radiation of marine thalattosuchians resulted in very low morphological disparity but moderate variation in jaw biomechanics, highlighting a hydrodynamic constraint on mandibular form. Third, during the Cretaceous terrestrial radiations of neosuchians and notosuchians, mandibular morphological variation increased considerably. By the Late Cretaceous, crocodylomorphs evolved a range of morphologies equalling Late Triassic crurotarsans. By contrast, biomechanical disparity in the Cretaceous did not increase, essentially decoupling from morphology. This enigmatic result could be attributed to biomechanical evolution in other anatomical regions (e.g. cranium, dentition or postcranium), possibly releasing the mandible from selective pressures. Overall, our analyses reveal a complex relationship between morphological and biomechanical disparity in Mesozoic crurotarsans that culminated in specialized feeding ecologies and associated lifestyles.  相似文献   

17.
Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts.  相似文献   

18.
Recent molecular studies addressing the phylogenetic relationships of avian orders have had conflicting results. While studies using nuclear DNA sequences tend to support traditional taxonomic views, also supported by morphological data [(paleognaths (galloanseres (all other birds)))], with songbirds forming a clade within Neoaves (all other birds), analyses with complete mtDNA genomes have resulted in topologies that place songbirds as one of the earliest-diverging avian lineages. Considering that over half of the extant bird species are songbirds, these different results have very different implications for our understanding of avian evolution. We analyzed data sets comprising nearly 4 kb of mitochondrial DNA (mtDNA) (complete 12S, ND1, ND2, and cytochrome b) plus 600 bp of the nuclear gene c-mos for 15 birds that were chosen to represent all major avian clades and to minimize potential long-branch attraction problems; we used a partition-specific maximum likelihood approach. Our results show congruence with respect to the ingroup among phylogenies obtained with mtDNA and the nuclear gene c-mos, separately or combined. The data sets support a traditional avian taxonomy, with paleognaths (ratites and tinamous) occupying a basal position and with songbirds more derived and forming a monophyletic group. We also show that, for mtDNA studies, turtles may be a better outgroup for birds than crocodilians because of their slower rate of sequence evolution.  相似文献   

19.
Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds.  相似文献   

20.
In the past years, various Eocene fossil birds were described as stem group representatives of the zygodactyl Psittaciformes (parrots). These birds show quite disparate morphologies, which cast some doubt on the correct assignment of all of them to the psittaciform stem group. A reassessment of their affinities is further needed, because it was recently proposed that among extant birds, Psittaciformes and Passeriformes (passerines) form a clade and that passerines possibly derived from a zygodactyl ancestor. Here, phylogenetic analyses are performed, which for the first time also include representatives of the Zygodactylidae, the extinct zygodactyl sister taxon of the Passeriformes. The early Eocene Psittacopes was originally described as a stem group representative of Psittaciformes. However, none of the present analyses supported psittaciform affinities for Psittacopes and instead recovered this taxon in a clade together with zygodactylids and passerines. Also part of this clade are the early Eocene taxa Pumiliornis and Morsoravis, and it is detailed that Psittacopes and the long‐beaked and presumably nectarivorous Pumiliornis, with which it has not yet been compared, are very similar in their postcranial osteology. The present analysis corroborates the hypothesis of a zygodactyl stem species of passerines. To account for these results, Psittacopes is here assigned to a new higher‐level taxon and a new name is also introduced for the clade including Zygodactylidae and Passeriformes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号