首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetics of p53 binding to promoter sites in vivo   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

2.
The formation of specific protein interactions plays a crucial role in most, if not all, biological processes, including signal transduction, cell regulation, the immune response and others. Recent advances in our understanding of the molecular architecture of protein-protein binding sites, which facilitates such diversity in binding affinity and specificity, are enabling us to address key questions. What is the amino acid composition of binding sites? What are interface hotspots? How are binding sites organized? What are the differences between tight and weak interacting complexes? How does water contribute to binding? Can the knowledge gained be translated into protein design? And does a universal code for binding exist, or is it the architecture and chemistry of the interface that enable diverse but specific binding solutions?  相似文献   

3.
4.
5.
Discrimination of DNA binding sites by mutant p53 proteins.   总被引:2,自引:1,他引:2       下载免费PDF全文
Critical determinants of DNA recognition by p53 have been identified by a molecular genetic approach. The wild-type human p53 fragment containing amino acids 71 to 330 (p53(71-330)) was used for in vitro DNA binding assays, and full-length human p53 was used for transactivation assays with Saccharomyces cerevisiae. First, we defined the DNA binding specificity of the wild-type p53 fragment by using systematically altered forms of a known consensus DNA site. This refinement indicates that p53 binds with high affinity to two repeats of PuGPuCA.TGPyCPy, a further refinement of an earlier defined consensus half site PuPuPuC(A/T).(T/A) GPyPyPy. These results were further confirmed by transactivation assays of yeast by using full-length human p53 and systematically altered DNA sites. Dimers of the pentamer AGGCA oriented either head-to-head or tail-to-tail bound efficiently, but transactivation was facilitated only through head-to-head dimers. To determine the origins of specificity in DNA binding by p53, we identified mutations that lead to altered specificities of DNA binding. Single-amino-acid substitutions were made at several positions within the DNA binding domain of p53, and this set of p53 point mutants were tested with DNA site variants for DNA binding. DNA binding analyses showed that the mutants Lys-120 to Asn, Cys-277 to Gln or Arg, and Arg-283 to Gln bind to sites with noncanonical base pair changes at positions 2, 3, and 1 in the pentamer (PuGPuCA), respectively. Thus, we implicate these residues in amino acid-base pair contacts. Interestingly, mutant Cys-277 to Gln bound a consensus site as two and four monomers, as opposed to the wild-type p53 fragment, which invariably binds this site as four monomers.  相似文献   

6.
7.

Background  

The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs) reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs) remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats.  相似文献   

8.
A global map of p53 transcription-factor binding sites in the human genome   总被引:48,自引:0,他引:48  
Wei CL  Wu Q  Vega VB  Chiu KP  Ng P  Zhang T  Shahab A  Yong HC  Fu Y  Weng Z  Liu J  Zhao XD  Chew JL  Lee YL  Kuznetsov VA  Sung WK  Miller LD  Lim B  Liu ET  Yu Q  Ng HH  Ruan Y 《Cell》2006,124(1):207-219
  相似文献   

9.
10.
11.
12.
13.
14.
15.
The tumor suppressor protein p53 plays a key role in maintaining the genomic stability of mammalian cells and preventing malignant transformation. In this study, we investigated the intracellular diffusion of a p53-GFP fusion protein using confocal fluorescence recovery after photobleaching. We show that the diffusion of p53-GFP within the nucleus is well described by a mathematical model for diffusion of particles that bind temporarily to a spatially homogeneous immobile structure with binding and release rates k1 and k2, respectively. The diffusion constant of p53-GFP was estimated to be Dp53-GFP=15.4 microm2 s-1, significantly slower than that of GFP alone, DGFP=41.6 microm2 s-1. The reaction rates of the binding and unbinding of p53-GFP were estimated as k1=0.3 s-1 and k2=0.4 s-1, respectively, values suggestive of nonspecific binding. Consistent with this finding, the diffusional mobilities of tumor-derived sequence-specific DNA binding mutants of p53 were indistinguishable from that of the wild-type protein. These data are consistent with a model in which, under steady-state conditions, p53 is latent and continuously scans DNA, requiring activation for sequence-specific DNA binding.  相似文献   

16.
17.
18.
19.
20.
We analysed by analytical ultracentrifugation and fluorescence anisotropy the binding of p53 truncation mutants to sequence-specific DNA. The synthetic 30 base-pair DNA oligomers contained the 20 base-pair recognition elements for p53, consisting of four sites of five base-pairs per p53 monomer. We found that the binding at low ionic strengths was obscured by artifacts of non-specific binding and so made measurements at higher ionic strengths. Analytical ultracentrifugation of the construct p53CT (residues 94-360, containing the DNA-binding core and tetramerization domains) gave a dissociation constant of approximately 3 microM for its dimer-tetramer equilibrium, similar to that of full-length protein. Analytical ultracentrifugation and fluorescence anisotropy showed that p53CT formed a complex with the DNA constructs with 2:1 stoichiometry (dimer:DNA). The binding of p53CT (1-100 nm range) to DNA was highly cooperative, with a Hill coefficient of 1.8 (dimer:DNA). The dimeric L344A mutant of p53CT has impaired tetramerization. It bound to full-length DNA p53 recognition sequence, but with sixfold less affinity than wild-type protein. It did not form a detectable complex with a 30-mer DNA construct containing two specific five base-pair sites and two random sites, emphasizing the high co-operativity of the binding. The fundamental active unit of p53 appears to be the tetramer, which is induced by DNA binding, although it is a dimer at low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号