首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca2+. However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca2+-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca2+-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca2+ enhanced mGluR1α-mediated intracellular Ca2+ responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca2+ diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca2+, respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca2+ binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca2+. These studies reveal that binding of extracellular Ca2+ to the predicted Ca2+-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.  相似文献   

2.
Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (αβγδ) and neuronal (α7, α3β2, and α4β2) nicotinic acetylcholine receptors (nAChRs) with highest affinity for α7-nAChRs. The high resolution (1.5 Å) crystal structure revealed haditoxin to be a homodimer, like κ-neurotoxins, which target neuronal α3β2- and α4β2-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain α-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain α-neurotoxins and κ-neurotoxins notwithstanding, haditoxin exhibited unique blockade of α7-nAChRs (IC50 180 nm), which is recognized by neither short-chain α-neurotoxins nor κ-neurotoxins. This is the first report of a dimeric short-chain α-neurotoxin interacting with neuronal α7-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.  相似文献   

3.
GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not. The data are consistent with GAT107 activity arising from two different sites. We show that the coupling between PAMs and the binding of orthosteric ligands requires tryptophan 55 (Trp-55), which is located at the subunit interface on the complementary surface of the orthosteric binding site. Mutations of Trp-55 increase the direct activation produced by GAT107 and reduce or prevent the synergy between allosteric and orthosteric binding sites, so that these mutants can also be directly activated by other PAMs such as PNU-120596 and TQS, which do not activate wild-type α7 in the absence of orthosteric agonists. We identify Tyr-93 as an essential element for orthosteric activation, because Y93C mutants are insensitive to orthosteric agonists but respond to GAT107. Our data show that both orthosteric and allosteric activation of α7 nAChR require cooperative activity at the interface between the subunits in the extracellular domain. These cooperative effects rely on key aromatic residues, and although mutations of Trp-55 reduce the restraints placed on the requirement for orthosteric agonists, Tyr-93 can conduct both orthosteric activation and desensitization among the subunits.  相似文献   

4.
α-Synuclein (αSyn) aggregation is involved in the pathogenesis of Parkinson disease (PD). Recently, substitution of histidine 50 in αSyn with a glutamine, H50Q, was identified as a new familial PD mutant. Here, nuclear magnetic resonance (NMR) studies revealed that the H50Q substitution causes an increase of the flexibility of the C-terminal region. This finding provides direct evidence that this PD-causing mutant can mediate long range effects on the sampling of αSyn conformations. In vitro aggregation assays showed that substitution of His-50 with Gln, Asp, or Ala promotes αSyn aggregation, whereas substitution with the positively charged Arg suppresses αSyn aggregation. Histidine carries a partial positive charge at neutral pH, and so our result suggests that positively charged His-50 plays a role in protecting αSyn from aggregation under physiological conditions.  相似文献   

5.
We investigated the role of HDAC3 in anti-cancer drug-resistance. The expression of HDAC3 was decreased in cancer cell lines resistant to anti-cancer drugs such as celastrol and taxol. HDAC3 conferred sensitivity to these anti-cancer drugs. HDAC3 activity was necessary for conferring sensitivity to these anti-cancer drugs. The down-regulation of HDAC3 increased the expression of MDR1 and conferred resistance to anti-cancer drugs. The expression of tubulin β3 was increased in drug-resistant cancer cell lines. ChIP assays showed the binding of HDAC3 to the promoter sequences of tubulin β3 and HDAC6. HDAC6 showed an interaction with tubulin β3. HDAC3 had a negative regulatory role in the expression of tubulin β3 and HDAC6. The down-regulation of HDAC6 decreased the expression of MDR1 and tubulin β3, but did not affect HDAC3 expression. The down-regulation of HDAC6 conferred sensitivity to taxol. The down-regulation of tubulin β3 did not affect the expression of HDAC6 or MDR1. The down-regulation of tubulin β3 conferred sensitivity to anti-cancer drugs. Our results showed that tubulin β3 serves as a downstream target of HDAC3 and mediates resistance to microtubule-targeting drugs. Thus, the HDAC3-HDAC6-Tubulin β axis can be employed for the development of anti-cancer drugs.  相似文献   

6.
Subtype-selective ligands are important tools for the pharmacological characterisation of neurotransmitter receptors. This is particularly the case for nicotinic acetylcholine receptors (nAChRs), given the heterogeneity of their subunit composition. In addition to agonists and antagonists that interact with the extracellular orthosteric nAChR binding site, a series of nAChR allosteric modulators have been identified that interact with a distinct transmembrane site. Here we report studies conducted with three pharmacologically distinct nicotinic ligands, an orthosteric agonist (compound B), a positive allosteric modulator (TQS) and an allosteric agonist (4BP-TQS). The primary focus of the work described in this study is to examine the suitability of these compounds for the characterisation of native neuronal receptors (both rat and human). However, initial experiments were conducted on recombinant nAChRs demonstrating the selectivity of these three compounds for α7 nAChRs. In patch-clamp recordings on rat primary hippocampal neurons we found that all these compounds displayed pharmacological properties that mimicked closely those observed on recombinant α7 nAChRs. However, it was not possible to detect functional responses with compound B, an orthosteric agonist, using a fluorescent intracellular calcium assay on either rat hippocampal neurons or with human induced pluripotent stem cell-derived neurons (iCell neurons). This is, presumably, due to the rapid desensitisation of α7 nAChR that is induced by orthosteric agonists. In contrast, clear agonist-evoked responses were observed in fluorescence-based assays with the non-desensitising allosteric agonist 4BP-TQS and also when compound B was co-applied with the non-desensitising positive allosteric modulator TQS. In summary, we have demonstrated the suitability of subtype-selective orthosteric and allosteric ligands for the pharmacological identification and characterisation of native nAChRs and the usefulness of ligands that minimise receptor desensitisation for the characterisation of α7 nAChRs in fluorescence-based assays.  相似文献   

7.
Mammals that prey on venomous snakes include several opossums (Didelphidae), at least two hedgehogs (Erinaceidae), several mongooses (Herpestidae), several mustelids, and some skunks (Mephitidae). As a group, these taxa do not share any distinctive morphological traits. Instead, mammalian adaptations for ophiophagy seem to consist only in the ability to resist the toxic effects of snake venom. Molecular mechanisms of venom resistance (as indicated by biochemical research on opossums, mongooses, and hedgehogs) include toxin-neutralizing serum factors and adaptive changes in venom-targeted molecules. Of these, toxin-neutralizing serum factors have received the most research attention to date. All of the toxin-neutralizing serum proteins discovered so far in both opossums and mongooses are human α1B-glycoprotein homologs that inhibit either snake-venom metalloproteinases or phospholipase A(2) myotoxins. By contrast, adaptive changes in venom-targeted molecules have received far less attention. The best-documented examples include amino-acid substitutions in mongoose nicotinic acetylcholine receptor that inhibit binding by α-neurotoxins, and amino-acid substitutions in opossum von Willebrand factor (vWF) that are hypothesized to weaken the bond between vWF and coagulopathic C-type lectins. Although multiple mechanisms of venom resistance are known from some species, the proteomic complexity of most snake venoms suggests that the evolved biochemical defences of ophiophagous mammals are likely to be far more numerous than currently recognized. Whereas most previous research in this field has been motivated by the potential for medical applications, venom resistance in ophiophagous mammals is a complex adaptation that merits attention from comparative biologists. Unfortunately, evolutionary inference is currently limited by ignorance about many relevant facts that can only be provided by future research.  相似文献   

8.
Development of a rapid, on-site detection tool for snakebite is highly sought after, owing to its clinically and forensically relevant medicolegal significance. Polyvalent antivenom therapy in the management of such envenomation cases is finite due to its poor venom neutralization capabilities as well as diagnostic ramifications manifested as untoward immunological reactions. For precise molecular diagnosis of elapid venoms of the big four snakes, we have developed a lateral flow kit using a monoclonal antibody (AB1; IgG1 – κ chain; Kd: 31 nM) generated against recombinant cytotoxin-7 (rCTX-7; 7.7 kDa) protein of the elapid venom. The monoclonal antibody specifically detected the venoms of Naja naja (p < 0.0001) and Bungarus caeruleus (p<0.0001), without showing any immunoreactivity against the viperidae snakes in big four venomous snakes. The kit developed attained the limit of quantitation of 170 pg/μL and 2.1 ng/μL in spiked buffer samples and 28.7 ng/μL and 110 ng/μL in spiked serum samples for detection of N. naja and B. caeruleus venoms, respectively. This kit holds enormous potential in identification of elapid venom of the big four snakes for effective prognosis of an envenomation; as per the existing medical guidelines.  相似文献   

9.
Co-expression of the auxiliary β1 subunit with the pore forming α subunit of BK dramatically alters apparent calcium sensitivity. Investigation of the mechanism underlying the increase in calcium sensitivity of BK in smooth muscle has concentrated on the energetic effect of β1′s interaction with α. We take a novel approach, exploring whether β1 modification of calcium sensitivity reflects altered interaction between the channel protein and surrounding lipids. We reconstituted hSlo BK α and BK α+β1 channels into two sets of bilayers. One set contained POPE with POPS, POPG, POPA and POPC, where the length of acyl chains is constant, but surface charge differs. The second set is a series of neutral bilayers formed from DOPE with phosphatidylcholines (PCs) of varying acyl chain lengths: C (14∶1), C (18∶1), C (22∶1) and C (24∶1), and with brain sphingomyelin (SPM), in which surface charge is constant, but bilayer thickness varies. The increase in calcium sensitivity caused by the β1 subunit was preserved in negatively charged lipid bilayers but not in neutral bilayers, indicating that modification of apparent Ca2+ sensitivity by β1 is modulated by membrane lipids, requiring negatively charged lipids in the membrane. Moreover, the presence of β1 reduces BK activity in thin bilayers of PC 14∶1 and thick bilayers containing SPM, but has no significant effect on activity of BK in PC 18∶1, PC 22∶1 and PC 24∶1 bilayers. These data suggest that auxiliary β1 subunits fine-tune channel gating not only through direct subunit-subunit interactions but also by modulating lipid-protein interactions.  相似文献   

10.
A switch in the conformational properties of α-synuclein (αS) is hypothesized to be a key step in the pathogenic mechanism of Parkinson’s disease (PD). Whereas the beta-sheet-rich state of αS has long been associated with its pathological aggregation in PD, a partially alpha-helical state was found to be related to physiological lipid binding; this suggests a potential role of the alpha-helical state in controlling synaptic vesicle cycling and resistance to β-sheet rich aggregation. N-terminal acetylation is the predominant post-translational modification of mammalian αS. Using circular dichroism, isothermal titration calorimetry, and fluorescence spectroscopy, we have analyzed the effects of N-terminal acetylation on the propensity of recombinant human αS to form the two conformational states in interaction with lipid membranes. Small unilamellar vesicles of negatively charged lipids served as model membranes. Consistent with previous NMR studies using phosphatidylserine, we found that membrane-induced α-helical folding was enhanced by N-terminal acetylation and that greater exothermic heat could be measured upon vesicle binding of the modified protein. Interestingly, the folding and lipid binding enhancements with phosphatidylserine in vitro were weak when compared to that of αS with GM1, a lipid enriched in presynaptic membranes. The resultant increase in helical folding propensity of N-acetylated αS enhanced its resistance to aggregation. Our findings demonstrate the significance of the extreme N-terminus for folding nucleation, for relative GM1 specificity of αS-membrane interaction, and for a protective function of N-terminal-acetylation against αS aggregation mediated by GM1.  相似文献   

11.
This paper reports that the acetylation of lysine ε-NH3+ groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated α-amylase toward inactivation is attributed to the increased net negative charge of α-amylase that resulted from the acetylation of lysine ammonium groups (lysine ε-NH3+ → ε-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial α-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications.  相似文献   

12.
Mitochondrial processing peptidases are heterodimeric enzymes (α/βMPP) that play an essential role in mitochondrial biogenesis by recognizing and cleaving the targeting presequences of nuclear-encoded mitochondrial proteins. The two subunits are paralogues that probably evolved by duplication of a gene for a monomeric metallopeptidase from the endosymbiotic ancestor of mitochondria. Here, we characterize the MPP-like proteins from two important human parasites that contain highly reduced versions of mitochondria, the mitosomes of Giardia intestinalis and the hydrogenosomes of Trichomonas vaginalis. Our biochemical characterization of recombinant proteins showed that, contrary to a recent report, the Trichomonas processing peptidase functions efficiently as an α/β heterodimer. By contrast, and so far uniquely among eukaryotes, the Giardia processing peptidase functions as a monomer comprising a single βMPP-like catalytic subunit. The structure and surface charge distribution of the Giardia processing peptidase predicted from a 3-D protein model appear to have co-evolved with the properties of Giardia mitosomal targeting sequences, which, unlike classic mitochondrial targeting signals, are typically short and impoverished in positively charged residues. The majority of hydrogenosomal presequences resemble those of mitosomes, but longer, positively charged mitochondrial-type presequences were also identified, consistent with the retention of the Trichomonas αMPP-like subunit. Our computational and experimental/functional analyses reveal that the divergent processing peptidases of Giardia mitosomes and Trichomonas hydrogenosomes evolved from the same ancestral heterodimeric α/βMPP metallopeptidase as did the classic mitochondrial enzyme. The unique monomeric structure of the Giardia enzyme, and the co-evolving properties of the Giardia enzyme and substrate, provide a compelling example of the power of reductive evolution to shape parasite biology.  相似文献   

13.
Rapid advances in microscopy and genetic labeling strategies have created new opportunities for time-lapse imaging of embryonic development. However, methods for immobilizing embryos for long periods while maintaining normal development have changed little. In zebrafish, current immobilization techniques rely on the anesthetic tricaine. Unfortunately, prolonged tricaine treatment at concentrations high enough to immobilize the embryo produces undesirable side effects on development. We evaluate three alternative immobilization strategies: combinatorial soaking in tricaine and isoeugenol, injection of α-bungarotoxin protein, and injection of α-bungarotoxin mRNA. We find evidence for co-operation between tricaine and isoeugenol to give immobility with improved health. However, even in combination these anesthetics negatively affect long-term development. α-bungarotoxin is a small protein from snake venom that irreversibly binds and inactivates acetylcholine receptors. We find that α-bungarotoxin either as purified protein from snakes or endogenously expressed in zebrafish from a codon-optimized synthetic gene can immobilize embryos for extended periods of time with few health effects or developmental delays. Using α-bungarotoxin mRNA injection we obtain complete movies of zebrafish embryogenesis from the 1-cell stage to 3 days post fertilization, with normal health and no twitching. These results demonstrate that endogenously expressed α-bungarotoxin provides unprecedented immobility and health for time-lapse microscopy.  相似文献   

14.
We reported previously that our designed polypeptide α3 (21 residues), which has three repeats of a seven-amino-acid sequence (LETLAKA)3, forms not only an amphipathic α-helix structure but also long fibrous assemblies in aqueous solution. To address the relationship between the electrical states of the polypeptide and its α-helix and fibrous assembly formation, we characterized mutated polypeptides in which charged amino acid residues of α3 were replaced with Ser. We prepared the following polypeptides: 2Sα3 (LSTLAKA)3, in which all Glu residues were replaced with Ser residues; 6Sα3 (LETLASA)3, in which all Lys residues were replaced with Ser; and 2S6Sα3 (LSTLASA)3; in which all Glu and Lys residues were replaced with Ser. In 0.1M KCl, 2Sα3 formed an α-helix under basic conditions and 6Sα3 formed an α-helix under acid conditions. In 1M KCl, they both formed α-helices under a wide pH range. In addition, 2Sα3 and 6Sα3 formed fibrous assemblies under the same buffer conditions in which they formed α-helices. α-Helix and fibrous assembly formation by these polypeptides was reversible in a pH-dependent manner. In contrast, 2S6Sα3 formed an α-helix under basic conditions in 1M KCl. Taken together, these findings reveal that the charge states of the charged amino acid residues and the charge state of the Leu residue located at the terminus play an important role in α-helix formation.  相似文献   

15.
Constitutively active tyrosine kinases promote leukemogenesis by increasing cell proliferation and inhibiting apoptosis. However, mechanisms underlying apoptotic inhibition have not been fully elucidated. In many settings, apoptosis occurs by mitochondrial cytochrome c release, which nucleates the Apaf-1/caspase-9 apoptosome. Here we report that the leukemogenic kinases, Bcr-Abl, FLT3/D835Y, and Tel-PDGFRβ, all can inhibit apoptosome function. In cells expressing these kinases, the previously reported apoptosome inhibitor, Hsp90β, bound strongly to Apaf-1, preventing cytochrome c-induced Apaf-1 oligomerization and caspase-9 recruitment. Hsp90β interacted weakly with the apoptosome in untransformed cells. While Hsp90β was phosphorylated at Ser 226/Ser 255 in untransformed cells, phosphorylation was absent in leukemic cells. Expression of mutant Hsp90β (S226A/S255A), which mimics the hypophosphorylated form in leukemic cells, conferred resistance to cytochrome c-induced apoptosome activation in normal cells, reflecting enhanced binding of nonphosphorylatable Hsp90β to Apaf-1. In Bcr-Abl-positive mouse bone marrow cells, nonphosphorylatable Hsp90β expression conferred imatinib (Gleevec) resistance. These data provide an explanation for apoptosome inhibition by activated leukemogenic tyrosine kinases and suggest that alterations in Hsp90β-apoptosome interactions may contribute to chemoresistance in leukemias.  相似文献   

16.
Candida albicans forms two types of biofilm, depending upon the configuration of the mating type locus. Although architecturally similar, a/α biofilms are impermeable, impenetrable, and drug resistant, whereas a/a and α/α biofilms lack these traits. The difference appears to be the result of an alternative matrix. Overexpression in a/a cells of BCR1, a master regulator of the a/α matrix, conferred impermeability, impenetrability, and drug resistance to a/a biofilms. Deletion of BCR1 in a/α cells resulted in the loss of these a/α-specific biofilm traits. Using BCR1 overexpression in a/a cells, we screened 107 genes of interest and identified 8 that were upregulated by Bcr1. When each was overexpressed in a/a biofilms, the three a/α traits were partially conferred, and when each was deleted in a/α cells, the traits were partially lost. Five of the eight genes have been implicated in iron homeostasis, and six encode proteins that are either in the wall or plasma membrane or secreted. All six possess sites for O-linked and N-linked glycosylation that, like glycosylphosphatidylinositol (GPI) anchors, can cross-link to the wall and matrix, suggesting that they may exert a structural role in conferring impermeability, impenetrability, and drug resistance, in addition to their physiological functions. The fact that in a screen of 107 genes, all 8 of the Bcr1-upregulated genes identified play a role in impermeability, impenetrability, and drug resistance suggests that the formation of the a/α matrix is highly complex and involves a larger number of genes than the initial ones identified here.  相似文献   

17.
Plant NBS-LRR R-genes recognizes several pathogen associated molecular patterns (PAMPs) and limit pathogen infection through a multifaceted defense response. CzR1, a coiled-coil-nucleotide-binding-site-leucine-rich repeat R-gene isolated from Curcuma zedoaria L exhibit constitutive resistance to different strains of P. aphanidermatum. Majority of the necrotrophic oomycetes are characterized by the presence of carbohydrate PAMPs β-glucans in their cell walls which intercat with R-genes. In the present study, we predicted the 3D (three dimensional) structure of CzR1 based on homology modeling using the homology module of Prime through the Maestro interface of Schrodinger package ver 2.5. The docking investigation of CzR1 with β-glucan using the Glide software suggests that six amino acid residues, Ser186, Glu187, Ser263, Asp264, Asp355 and Tyr425 act as catalytic residues and are involved in hydrogen bonding with ligand β-(1,3)-D-Glucan. The calculated distance between the carboxylic oxygen atoms of Glu187–Asp355 pair is well within the distance of 5Å suggesting a positive glucanase activity of CzR1. Elucidation of these molecular characteristics will help in in silico screening and understanding the structural basis of ligand binding to CzR1 protein and pave new ways towards a broad spectrum rhizome rot resistance development in the cultivated turmeric.  相似文献   

18.
ρ-Da1a is a three-finger fold toxin from green mamba venom that is highly selective for the α1A-adrenoceptor. This toxin has atypical pharmacological properties, including incomplete inhibition of 3H-prazosin or 125I-HEAT binding and insurmountable antagonist action. We aimed to clarify its mode of action at the α1A-adrenoceptor. The affinity (pKi 9.26) and selectivity of ρ-Da1a for the α1A-adrenoceptor were confirmed by comparing binding to human adrenoceptors expressed in eukaryotic cells. Equilibrium and kinetic binding experiments were used to demonstrate that ρ-Da1a, prazosin and HEAT compete at the α1A-adrenoceptor. ρ-Da1a did not affect the dissociation kinetics of 3H-prazosin or 125I-HEAT, and the IC50 of ρ-Da1a, determined by competition experiments, increased linearly with the concentration of radioligands used, while the residual binding by ρ-Da1a remained stable. The effect of ρ-Da1a on agonist-stimulated Ca2+ release was insurmountable in the presence of phenethylamine- or imidazoline-type agonists. Ten mutations in the orthosteric binding pocket of the α1A-adrenoceptor were evaluated for alterations in ρ-Da1a affinity. The D1063.32A and the S1885.42A/S1925.46A receptor mutations reduced toxin affinity moderately (6 and 7.6 times, respectively), while the F862.64A, F2886.51A and F3127.39A mutations diminished it dramatically by 18- to 93-fold. In addition, residue F862.64 was identified as a key interaction point for 125I-HEAT, as the variant F862.64A induced a 23-fold reduction in HEAT affinity. Unlike the M1 muscarinic acetylcholine receptor toxin MT7, ρ-Da1a interacts with the human α1A-adrenoceptor orthosteric pocket and shares receptor interaction points with antagonist (F862.64, F2886.51 and F3127.39) and agonist (F2886.51 and F3127.39) ligands. Its selectivity for the α1A-adrenoceptor may result, at least partly, from its interaction with the residue F862.64, which appears to be important also for HEAT binding.  相似文献   

19.
Many snake venoms are known for their antithrombotic activity. They contain components that specifically target different platelet-activating receptors such as the collagen-binding integrin α2β1 and the von Willebrand factor receptor GPIb. In a search for an α2β1 integrin-blocking component from the venom of the habu snake (Trimeresurus flavoviridis), we employed two independent purification protocols. First, we used the integrin α2A domain, a major collagen-binding domain, as bait for affinity purification of an α2β1 integrin-binding toxin from the crude venom. Second, in parallel, we used classical protein separation protocols and tested for α2β1 integrin-inhibiting capabilities by ELISA. Using both approaches, we identified flavocetin-A as an inhibitor of α2β1 integrin. Hitherto, flavocetin-A has been reported as a GPIb inhibitor. However, flavocetin-A inhibited collagen-induced platelet aggregation even after GPIb was blocked with other inhibitors. Moreover, flavocetin-A antagonized α2β1 integrin-mediated adhesion and migration of HT1080 human fibrosarcoma cells, which lack any GPIb, on collagen. Protein chemical analyses proved that flavocetin-A binds to α2β1 integrin and its α2A domain with high affinity and in a cooperative manner, which most likely is due to its quaternary structure. Kinetic measurements confirmed the formation of a strong complex between integrin and flavocetin-A, which dissociates very slowly. This study proves that flavocetin-A, which has long been known as a GPIb inhibitor, efficiently targets α2β1 integrin and thus blocks collagen-induced platelet activation. Moreover, our findings suggest that the separation of GPIb- and α2β1 integrin-blocking members within the C-type lectin-related protein family is less strict than previously assumed.  相似文献   

20.
Linker histone H1 (H1) is an abundant chromatin‐binding protein that acts as an epigenetic regulator binding to nucleosomes and altering chromatin structures and dynamics. Nonetheless, the mechanistic details of its function remain poorly understood. Recent work suggest that the number and position of charged side chains on the globular domain (GD) of H1 influence chromatin structure and hence gene repression. Here, we solved the solution structure of the unbound GD of human H1.0, revealing that the structure is almost completely unperturbed by complex formation, except for a loop connecting two antiparallel β‐strands. We further quantified the role of the many positive charges of the GD for its structure and conformational stability through the analysis of 11 charge variants. We find that modulating the number of charges has little effect on the structure, but the stability is affected, resulting in a difference in melting temperature of 26 K between GD of net charge +5 versus +13. This result suggests that the large number of positive charges on H1‐GDs have evolved for function rather than structure and high stability. The stabilization of the GD upon binding to DNA can thus be expected to have a pronounced electrostatic component, a contribution that is amenable to modulation by posttranslational modifications, especially acetylation and phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号