首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sialic acid (N-acetylneuraminic acid), a 9-carbon monosaccharide, has been widely studied in immunology, oncology and neurology. However, the effects of sialic acid on organ and intestinal development, liver function and gut microbiota were rarely studied. In this study, we found that oral sialic acid tended to increase the relative weight of liver and decreased the serum aspartate aminotransferase (GPT) activity. In addition, sialic acid treatment markedly reduced gut villus length, depth, the ratio of villus length/depth (L/D), areas, width and the number of goblet cells. Furthermore, gut microbes were changed in response to oral sialic acid, such as Staphylococcus lentus, Corynebacterium stationis, Corynebacterium urealyticum, Jeotgalibaca sp_PTS2502, Ignatzschineria indica, Sporosarcina pasteurii, Sporosarcina sp_HW10C2, Facklamia tabacinasalis, Oblitimonas alkaliphila, Erysipelatoclostridium ramosum, Blautia sp_YL58, Bacteroids thetaiotaomicron, Morganella morganii, Clostridioides difficile, Helicobacter tryphlonius, Clostridium sp_Clone47, Alistipes finegoldii, [pseudomonas]_geniculata and Pseudomonas parafulva at the species level. In conclusion, oral sialic acid altered the intestinal pathological state and microbial compositions, and the effect of sialic acid on host health should be further studied.  相似文献   

3.
4.
【目的】在饲喂低蛋白质日粮条件下,探究断奶仔猪生长相关激素、回肠和盲肠微生物组成及其代谢产物的变化。【方法】选取体重相近杜长大断奶仔猪54头,随机平均分为3组,每组18头,分别饲喂含20%(NP组)、17%(MP组)和14%(LP组)粗蛋白日粮,平衡日粮中的赖氨酸、蛋氨酸、苏氨酸和色氨酸,于试验第10、25和45天每组屠宰6头,采血测定血常规和生长相关激素;于第45天采集回肠和盲肠食糜,分析微生物及其代谢产物。【结果】与NP组相比,第25和45天时MP和LP组尿素氮水平显著降低(P0.05),第25天时LP组甘油三脂含量、第45天时LP组胆固醇含量显著增加(P0.05)。各时间点血液胰高血糖素、胰岛素、生长激素、T3和T4在3组之间差异均不显著。门水平上,回肠和盲肠中的微生物均以厚壁菌门占主导地位,但各组间差异不显著;随日粮蛋白质含量降低,乳酸杆菌属呈上升趋势,严格梭菌属呈下降趋势,但差异不显著。降低日粮蛋白质含量显著减少了回肠和盲肠中氨氮的产量(P0.05)。【结论】断奶仔猪日粮蛋白质降低3或6个百分点不影响机体生长相关激素的分泌,但能降低血液尿素氮和肠道内氨氮的浓度,对肠道有益菌乳酸杆菌属的相对丰度有一定的提高作用。这说明低蛋白质日粮能提高断奶仔猪对饲料氮源的利用率,且有利于肠道健康。  相似文献   

5.
6.
Neonatal hypoxic ischemic encephalopathy (HIE) in the perinatal period can lead to significant neurological deficits in later life. Total body cooling (TBC) is a neuroprotective strategy used in the treatment of HIE and has been shown to reduce seizures and improve neurodevelopmental outcomes in treated infants. Little is known, however, about the effects of HIE/TBC on the developing gut microbiota composition and subsequent metabolic profile. Ten term infants with HIE who received TBC at 33.5 °C for 72 h were recruited. A control group consisted of nine healthy full term infants. Faecal samples were collected from both groups at 2 years of age and stored at −20 °C. 16S rRNA amplicon Illumina sequencing was carried out to determine gut microbiota composition and 1H NMR analysis was performed to determine the metabolic profile of faecal water. The gut microbiota composition of the HIE/TBC infants were found to have significantly lower proportions of Bacteroides compared to the non-cooled healthy control group. Alpha diversity measures detected significantly lower diversity in microbial richness in the HIE/TBC infant group compared to the control infants (Shannon index, <0.05). High inter-individual variation was found in gut microbiota composition and metabolic profile of both groups. Initial principal coordinate analysis and hierarchal clustering of compounds on MetaboAnalyst 3.0 indicated no clear separation in the metabolic profile of these two infant groups. These results suggest that there is no significant impact on the gut microbial development of HIE/TBC infants compared to healthy infants at 2 years of life. To our knowledge this is the first study to report the gut microbiota composition and metabolic profile of infants who have experienced HIE/TBC at birth.  相似文献   

7.
8.
Although fish immunology has progressed in the last few years, the contribution of the normal endogenous microbiota to the overall health status has been so far underestimated. In this context, the establishment of a normal or protective microbiota constitutes a key component to maintain good health, through competitive exclusion mechanisms, and has implications for the development and maturation of the immune system. The normal microbiota influences the innate immune system, which is of vital importance for the disease resistance of fish and is divided into physical barriers, humoral and cellular components. Innate humoral parameters include antimicrobial peptides, lysozyme, complement components, transferrin, pentraxins, lectins, antiproteases and natural antibodies, whereas nonspecific cytotoxic cells and phagocytes (monocytes/macrophages and neutrophils) constitute innate cellular immune effectors. Cytokines are an integral component of the adaptive and innate immune response, particularly IL-1 beta, interferon, tumor necrosis factor-alpha, transforming growth factor-beta and several chemokines regulate innate immunity. This review covers the innate immune mechanisms of protection against pathogens, in relation with the installation and composition of the normal endogenous microbiota in fish and its role on health. Knowledge of such interaction may offer novel and useful means designing adequate therapeutic strategies for disease prevention and treatment.  相似文献   

9.
Tryptophan (Trp), an α-amino acid, is the precursor of serotonin (5-hydroxytryptamine, 5-HT), which is involved in a variety of features of metabolic function and human nutrition. Evidence highlights the role of Trp metabolites (exclusively 5-HT) in the gastrointestinal (GI) tract; however, the mechanisms of action involved in the release of 5-HT in the GI tract are still unknown. Considering the fact that variations of 5-HT may facilitate the growth of certain GI disorders, gaining a better understanding of the function and release of 5-HT in the GI tract would be beneficial. Additionally, investigating Trp metabolism may clarify the relationship between Trp and gut microbiota. It is believed that other metabolites of Trp (mostly that of the kynurenine pathway) may play a significant role in controlling gut microbiota function. In this review, we have attempted to summarize the current research investigating the relationship of gut microbiota, Trp and 5-HT metabolism (with particular attention paid to their metabolite type, as well as a discussion of the research methods used in each study). Taking together, regarding the role that Trp/5-HT plays in a range of physical and mental diseases, the gut bacterial types, as well as the related disorders, have been exclusively considered.  相似文献   

10.
Defining the functional status of host-associated microbial ecosystems has proven challenging owing to the vast number of predicted genes within the microbiome and relatively poor understanding of community dynamics and community–host interaction. Metabolomic approaches, in which a large number of small molecule metabolites can be defined in a biological sample, offer a promising avenue to ‘fingerprint'' microbiota functional status. Here, we examined the effects of the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an optimized ultra performance liquid chromatography–mass spectrometry-based method. Differences between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific aspects of the microbiota''s metabolomic contribution, consistent with distinct microbial compositions. Comparison of microbiota composition and metabolome of mice humanized with different human donors revealed that the vast majority of metabolomic features observed in donor samples are produced in the corresponding HUM mice, and individual-specific features suggest ‘personalized'' aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using a defined model microbiota consisting of one or two species, we show that simplified communities can drive major changes in the host metabolomic profile. Our results demonstrate that metabolomics constitutes a powerful avenue for functional characterization of the intestinal microbiota and its interaction with the host.  相似文献   

11.
Recently, a “human gut microbial gene catalogue,” which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the “human gut microbial gene catalogue” were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.  相似文献   

12.
13.
肺部菌群及肠道菌群与肺癌密切相关,研究发现与健康人群相比肺癌患者的肺部及肠道菌群发生失调,即菌群组成结构发生显著改变。随着“肠-肺轴”概念的提出,肺部及肠道菌群在人体内的紧密联系越发受到重视,因此关于肺部及肠道菌群的研究对于阐明肺癌的发生发展机制有重要的指引作用。文中综述了肺癌患者肺部及肠道菌群的组成特点及可能的互作机制,强调了肠-肺轴中免疫系统的重要性,最后总结了肺部及肠道菌群对肺癌临床治疗的影响,并对肺部及肠道菌群可作为肺癌早期诊断与治疗的新颖靶点进行了展望。  相似文献   

14.
Aims: To investigate the impact of human milk oligosaccharides (HMOs) from a single donor (SO), HMOs from multiple donors (PO), a fructooligosaccharides and galactooligosaccharides mixture (FG) on the composition of a batch culture inoculated with faecal microbiota from formula‐fed infants. Methods and Results: Three substrates were compared using 24‐h pH‐controlled anaerobic batch cultures inoculated with infant faecal slurries. Changes in bacterial populations, short‐chain fatty acids (SCFA) production and bacterial 16S rRNA gene profiles were determined. All three substrates significantly increased numbers of bifidobacteria, bacteroides and those aligning with the clostridial cluster XIVa. Neither the FG nor the HMOs substrates supported the growth of the Clostridium perfringens–histolyticum group. SCFA production corresponded to changes observed in bacterial populations. Denaturing gradient gel electrophoresis fingerprint analysis showed a distinct profile of faecal bacteria present in each infant. Conclusions: HMOs modulated infant faecal culture composition in a similar manner to the prebiotic mixture FG in vitro. Significance and Impact of the Study: This is the first demonstration of the impact of pure HMOs on the mixed culture of infant faecal bacteria. HMOs induced the growth of several saccharolytic bacterial groups and may thus play a role in the health‐promoting attributes of human breast milk and have an extended significance in infant diet during/after weaning.  相似文献   

15.
The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.  相似文献   

16.
17.
[背景]孕期体重增长不当与孕妇血糖血脂水平紊乱密切相关,而血糖血脂水平与母胎代谢性疾病的发生密切相关.肠道菌群协调肠道细胞吸收营养物质,可能与母婴糖脂代谢疾病的发生具有密切关系.[目的]观察孕期增重不同的孕妇肠道菌群生物多样性、丰富度与功能间差异,探讨孕晚期肠道菌群与孕妇血糖血脂的相关性.[方法]收集34例孕晚期孕妇粪...  相似文献   

18.
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.  相似文献   

19.
AIMS: Certain milk factors may promote the growth of a gastrointestinal microflora predominated by bifidobacteria and may aid in overcoming enteric infections. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts. The effect of formula supplementation with two such factors was investigated in this study. METHODS AND RESULTS: Infant faecal specimens were used to ferment formulae supplemented with glycomacropeptide (GMP) and alpha-lactalbumin (alpha-la) in a two-stage compound continuous culture model. At steady state, all fermenter vessels were inoculated with 5 ml of 0.1 m phosphate-buffered saline (pH 7.2) containing 108 CFU ml-1 of either enteropathogenic Escherichia coli 2348/69 (O127:H6) or Salmonella serotype Typhimurium (DSMZ 5569). Bacteriology was determined by independent fluorescence in situ hybridization. Vessels that contained breast milk (BM), as well as alpha-la and GMP supplemented formula had stable total counts of bifidobacteria while lactobacilli increased significantly only in vessels with breast milk. Bacteroides, clostridia and E. coli decreased significantly in all three groups prior to pathogen addition. Escherichia coli counts decreased in vessels containing BM and alpha-la while Salmonella decreased significantly in all vessels containing BM, alpha-la and GMP. Acetate was the predominant acid. SIGNIFICANCE AND IMPACT OF THE STUDY: Supplementation of infant formulae with appropriate milk proteins may be useful in mimicking the beneficial bacteriological effects of breast milk.  相似文献   

20.
《Cell host & microbe》2022,30(1):124-138.e8
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号