首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of new 1H-detected heteronuclear 1H-31P shift correlation experiments is demonstrated for oligonucleotides of 12 and 40 base pairs. The methods give unambiguous assignments of the 31P resonances and also permit identification of the C4' and C5' sugar protons. Use of the new methods enables one to make sequence-specific resonance assignments without reference to a known or assumed conformation of the DNA fragment.  相似文献   

2.
Assignments in the 1H NMR spectrum for more than 120 resonances arising from 38 of the 130 amino acid residues of human lysozyme are presented. Assignments have been achieved using a combination of one and two-dimensional NMR techniques. Two-dimensional double-quantum correlated spectroscopy and relayed coherence transfer spectroscopy were found to be particularly useful for the identification of spin systems in the aromatic and methyl regions of the spectrum. These spin systems were assigned to specific residues in human lysozyme with reference to the X-ray crystal structure using one-dimensional nuclear Overhauser enhancement (NOE) data and a computer-based search procedure. Unique assignments were found for resonances of 27 amino acid residues even when a distance constraint on NOE effects of 0.7 nm was used in the search procedure; for the remaining residues closer constraints or additional information were required. The assignments include all but one of the resonances in the aromatic region of the spectrum and all the methyl group resonances in the region upfield of 0.6 ppm. The assignments presented here provide a basis for a comparison of the NMR spectra of human lysozyme and the more widely studied hen lysozyme.  相似文献   

3.
F Eckstein  T M Jovin 《Biochemistry》1983,22(19):4546-4550
Two phosphorothioate analogues of poly[d(A$-T)] have been synthesized enzymatically. In one, poly[d(A$-T)], dTMP is replaced by thymidine 5'-O-phosphorothioate; in the other, poly[d(T$-A)], dAMP is replaced by 2'-deoxyadenosine 5'-O-phosphorothioate. The 31P NMR spectrum of poly[d-(A-T)] in solutions at low salt concentration shows two resonances at 51.80 and -4.25 ppm relative to trimethyl phosphate. The corresponding values for poly[d(T$-A)] are 51.51 and -4.43 ppm. These data allow the assignment of the downfield resonance at -4.23 ppm in poly[d(A-T)] to the phosphate group of d(TpA) and the resonance at -4.41 ppm to that of d(ApT). Thus, strong evidence is provided for a repeating dinucleotide structure. A comparison of the 31P NMR spectra of the various polymers in solutions of 2 M CsF reveals that both resonances are shifted upfield by approximately 0.9 ppm in the case of the phosphorothioates and by 0.2 or 0.4 ppm in the case of the phosphates. An upfield shift of about 0.18 ppm can also be observed for the two corresponding dinucleoside monophosphates. Thus, the upfield shift induced by high concentrations of CsF is not specific for the polymer backbone.  相似文献   

4.
Isolated beta chains from human adult hemoglobin at millimolar concentration are mainly associated to form beta 4 tetramers. We were able to obtain relevant two-dimensional proton nuclear magnetic resonance (NMR) spectra of such supermolecular complexes (Mr approximately 66,000) in the carboxylated state. Analysis of the spectra enabled us to assign the major part of the proton resonances corresponding to the heme substituents. We also report assignments of proton resonances originating from 12 amino acid side chains mainly situated in the heme pocket. These results provide a basis for a comparative analysis of the tertiary heme structure in isolated beta(CO) chains in solution and in beta(CO) subunits of hemoglobin crystals. The two structures are generally similar. A significantly different position, closer to the heme center, is predicted by the NMR for Leu-141 (H19) in isolated beta chains. Comparison of the assigned resonances of conserved amino acids in alpha chains, beta chains and sperm whale myoglobin indicates a close similarity of the tertiary heme pocket structure in the three homologous proteins. Significant differences were noted on the distal heme side, at the position of Val-E11, and on Leu-H19 and Phe-G5 position on the proximal side.  相似文献   

5.
M Bycroft  A R Fersht 《Biochemistry》1988,27(19):7390-7394
A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN'. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pKas for the six histidines in this enzyme. The pKas of the histidine residues in subtilisin BPN' have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pKa's in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN' can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pKa in the two enzymes can be assigned to histidine-238. This difference in pKa has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg.  相似文献   

6.
The proton resonances of the heme, the axial ligands, and other hyperfine-shifted resonances in the 1H nuclear magnetic resonance spectrum of horse ferricytochrome c have been investigated by means of one- and two-dimensional nuclear Overhauser and magnetization transfer methods. Conditions for saturation transfer experiments in mixtures of ferro- and ferricytochrome c were optimized for the cross assignment of corresponding resonances in the two oxidation states. New resonance assignments were obtained for the methine protons of both thioether bridges, the beta and gamma meso protons, the propionate six heme substituent, the N pi H of His-18, and the Tyr-67 OH. In addition, several recently reported assignments were confirmed. All of the resolved hyperfine-shifted resonances in the spectrum of ferricytochrome c are now identified. The Fermi contact shifts experienced by the heme and ligand protons are discussed.  相似文献   

7.
The interaction of two DNA octamers, d(m5CG)4 and d(GGAATTCC), with the polyamines spermine4+ and spermidine3+, has been studied by means of 1H‐nmr nuclear Overhauser effect (NOE) difference measurements. The experiments were performed at 10°C and for a polyamine charge to DNA charge (i.e., phosphate) ratio of 0.4, where the solution of d(m5CG)4 contains about 50% Z‐form of the DNA. The results show that the polyamine intramolecular NOEs for the protons on the propyl chains are similarly negative with the two oligonucleotides, while those on the butyl chain show slightly more negative NOE with d(m5CG)4 than with d(GGAATTCC). The fully N‐methylated analogues of spermine (Me10Spn4+) and spermidine (Me8Spd3+) as well as the diamines 1,3‐diaminopropane (DAP2+) and 1,4‐diaminobutane (putrescine2+) have been studied for the ability to transform d(m5CG)4 from the B‐ to the Z‐form. 1H‐nmr spectra showed the order spermine4+ > spermidine3+ > Me10Spn4+ > Me8Spd3+ > 1,3‐diaminopropane2+ > putrescine2+, with spermine showing the largest relative amount of Z‐DNA. 1H‐nmr pulsed‐gradient self‐diffusion measurements of the triamines showed a large difference in the interaction of Spd and Me8Spd with the two different duplexes. With the same duplex (either of the two), however, no difference between Spd and Me8Spd can be seen. Within a two‐state model this is interpreted as a larger fraction of bound polyamines with d(m5CG)4 than with d(GGAATTCC). © 1999 John Wiley & Sons, Inc. Biopoly 49: 41–53, 1999  相似文献   

8.
The assignment of the paramagnetically shifted resonances of the Fe(II)-bleomycin complex in D2O has been accomplished using the transfer of saturation method. A number of additional resonances arising from labile NH protons which are shifted by the metal ion are observed in the 1H spectrum of the complex in H2O. The temperature dependence of the chemical shifts is consistent with the formation of an isolated 1:1 complex, but does not obey either the Curie Law or the Curie-Weiss Law. The magnitude of the shifts suggests that the valeric acid hydroxyl (or carbonyl) group, the α-amino group, the imidazole Nπ, the carbamoyl oxygen, the pyrimidine N1 and/or the secondary amino group may be coordinated to the iron(II).  相似文献   

9.
In a low salt buffer (0.011 M Na+) stopped-flow kinetic results for the SDS driven dissociation of an ethidium-Poly d(G-C) X d(G-C) complex are 8.7, 23, and 58.5 s-1 at 20, 30, and 40 degrees C, respectively. These results predict that in NMR experiments at high field strengths, ethidium should be in slow exchange among polymer binding sites. This has been found to be the case for both 31P (109 MHz) and 1H (imino proton spectra in H2O at 270 MHz) experiments. At higher salt, and/or higher temperature, and/or lower field, the bound and free peaks are no longer resolved in the NMR spectra. Good agreement is obtained between the stopped-flow kinetic results and the coalescence temperature observed in NMR experiments. Imino protons in base pairs on both sides of the intercalated ethidium are shifted approximately one ppm upfield while only the phosphate groups at the intercalation site experience large chemical shifts.  相似文献   

10.
Proton NMR spectra of a covalently linked self-complementary RNA X DNA hybrid, r(GCG)-d(TATACGC), are recorded in H2O and D2O. Imino proton resonances as well as the non-exchangeable base and H-1' resonances are unambiguously assigned by means of nuclear. Overhauser effect measurements. Additional information was obtained by 31P NMR and circular dichroism spectra. The RNA parts in the duplex attain full conformational purity and adopt the usual A-RNA conformation. The DNA residues opposite the RNA tract do not adopt an A-type structure completely. Their respective sugar rings still appear to possess a certain conformational freedom. The same holds true for the central d(-TATA-) sequence which forms a DNA X DNA duplex. There appears to be a structural break in this part: the first two residues, T(4) and A(5), are clearly influenced by the adjacent RNA structure, whereas residues T(6) and A(7) behave quite similar to what usually is found in DNA duplexes in aqueous solution.  相似文献   

11.
31P nuclear magnetic resonance (31P NMR) was used to monitor cytoplasmic and vacuolar pH values in the filamentous fungus Aspergillus niger. To obtain a homogeneous cell sample and to be able to perform long term in vivo NMR measurements A. niger mycelium was kept in a setup that allows perfusion of the cell plug within the NMR tube. Mycelial samples, however, became rapidly clogged during perfusion leading to (partial) anaerobiosis of the plug with subsequent acidification of the cytoplasm. As a result, only short-term NMR measurements (5-10 min) were possible using free mycelium. To increase and to prolong perfusion, A. niger was immobilized in Ca(2+)-alginate beads. Deteriorated spectra recorded under hypoxia could be completely restored in the presence of oxygen. With this system perfusion in the presence of citrate could be maintained for at least 18 h at much higher rates (15 ml min-1 compared with 4 ml min-1 for free mycelium). During this period 31P NMR spectra were highly invariable, indicating approximate steady-state intracellular conditions during long term measurements. Perfusion in the presence of glucose resulted in complete depletion of the vacuolar inorganic phosphate pool within 45 min and yielded a higher pH gradient over the tonoplast than when citrate was used (delta pH = 1.6 and 1.4, respectively).  相似文献   

12.
31p-1H and 1H-1H chemical shift correlation spectroscopy are jointly used for providing a complete assignment of sugar proton (except H5' and H5") and phosphorus resonances in the double stranded oligonucleotide d (ATGCAT)2. In contrast to previous methods the specific assignment of overcrowded H5' H5" proton resonances is not required. Using the H3'-P coupling and also the long range H4'-P coupling, this quite general method can be easily implemented on intermediate field spectrometer. The present results pave the way to the 1H and 31P resonance assignment of longer double-stranded oligonucleotides.  相似文献   

13.
M J Kime 《FEBS letters》1984,173(2):342-346
The downfield proton NMR spectrum of aqueous uniformly nitrogen-15 enriched 5 S RNA fragment is presented. Selective nitrogen-15 decoupling difference proton spectroscopy revealed nitrogen-15 chemical shifts of fragment imino nitrogens. Nitrogen chemical shifts of nucleic acid guanine and uracil imino nitrogens have separate small ranges. Nitrogen-15 and proton chemical shift correlation by the heteronuclear decoupling permitted the identification of the base type of some previously unassigned imino proton resonances in the 5 S RNA fragment spectrum. Corresponding resonances in the natural isotopic abundance 5 S RNA fragment spectrum are assigned to base types by comparison with the enriched sample spectrum.  相似文献   

14.
A general method of assigning the non-exchangeable protons in the nuclear magnetic resonance spectra of small DNA molecules has been developed based upon two-dimensional autocorrelated (COSY) and nuclear Overhauser (NOESY) spectra in 2H2O solutions. Groups of protons in specific sugars or bases are identified by their scalar couplings (COSY), then connected spatially in a sequential fashion using the Overhauser effect (NOESY). The method appears to be generally applicable to moderate-sized DNA duplexes with structures close to B DNA. The self-complementary DNA sequence d(C-G-C-G-A-A-T-T-C-G-C-G) has been synthesized by the solid-phase phosphite triester technique and studied by this method. Analysis of the COSY spectrum and the NOESY spectrum leads to the unambiguous assignment of all protons in the molecule except the poorly resolved H5' and H5" resonances. The observed NOEs indicate qualitatively that, in solution, the d(C-G-C-G-A-A-T-T-C-G-C-G) helix is right-handed and close to the B DNA form with a structure similar to that determined by crystallography.  相似文献   

15.
In pioneering studies on the 31P NMR spectra of MgADP bound to the "molecular motor" myosin subfragment 1 (S1) in the temperature range of 0 to 25 degrees C, Shriver and Sykes [Biochemistry 20 (1981) 2004-2012/6357-6362; Biochemistry 21 (1982) 3022-3028], proposed that MgADP binds to myosin S1 as a mixture of two interconvertible conformers with different chemical shifts for the beta-P resonance of the S1-bound MgADP and that the concentrations of these conformers are related by an equilibrium constant K(T). Their model implied that the weighted average of the chemical shifts of the beta-P(MgADP) for S1-bound MgADP asymptotically approaches a high temperature limit. Here, and in our earlier paper [K. Konno, K. Ue, M. Khoroshev, H., Martinez, B.D. Ray, M.F. Morales, Proc. Natl. Acad. Sci. USA 97 (2000) 1461-1466], we report experimental similarities to Shriver and Sykes, but diverge from them (especially at 0 degrees C) in not finding two distinct peaks and in finding that the average chemical shift does not change with temperature. Our observations can be explained by chemical exchange of beta-P(MgADP) of S1-bound MgADP between two nearly energetically equivalent environments.  相似文献   

16.
Salts and polyamines have a variety of effects on the physical properties of DNA, including stabilization against thermal melting. We wished to gain greater insight into the mechanism of this stabilization by ascertaining its effect on the dynamics of base opening and closing reactions, as measured by NMR. Since the binding of spermidine(3+) is influenced by salt, and since spermidine may act as a base catalyst in proton exchange reactions, we have undertaken a study of salt and base catalyst effects on the imino proton exchange kinetics of a model oligomeric DNA. The selective longitudinal NMR relaxation rates of the hydrogen-bonded imino protons of the self-complementary octadeoxyribonucleotide d(GGAATTCC) monitor the rate of the base-catalyzed chemical exchange of these protons with solvent water. The exchange rates thus obtained provide a sensitive measure of the base-pair opening reactions of the DNA duplex. Under conditions of low pH and no added base catalyst, the NMR relaxation rates allow the determination of kd, the rate constant for the dissociation of the octameric duplex into single strands. Titration with the base catalyst tris(hydroxymethyl)aminomethane allows the determination of kop, the rate constant for the localized opening of individual base pairs, prior to dissociation. A significant Na+ concentration dependence is found for kd. From an analysis of this dependence, it is determined that 0.6 +/- 0.1 sodium ion is released during the dissociation event. The activation energy for helix dissociation (200 +/- 5 kJ/mol) is not dependent on the sodium ion concentration, indicating that the dissociation is entropically driven by the release of bound sodium ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
《Insect Biochemistry》1989,19(3):323-326
High resolution 31P nuclear magnetic resonance spectroscopy (NMR) was successfully applied to 5th instar larvae of Manduca sexta. Conditions for in vivo analysis under non-saturating conditions are described. The 31P NMR spectrum of intact larvae was composed of six peaks. Their resonance frequencies are reported relative to orthophosphoric acid. Analysis of tissue extracts demonstrated the in vivo peaks to be composed of the β phosphorus resonance of nucleotide triphosphates (NTP) at −19.36 ppm; α phosphorus of NTP and nucleotide diphosphates (NDP) at −10.51 ppm; β and γ phosphorus of NDP and NTP, respectively, at −5.42 ppm; phosphoarginine (PA) at −3.45 ppm; inorganic phosphate (Pi) at +2.76 ppm and sugar phosphates at +3.34 ppm. The major sugar phosphate present in fat body extracts was trehalose-6-phosphate and this was the major phosphorus component of the spectrum of hemolymph. The spin-lattice relaxation times for each in vivo peak were determined.Titration of aqueous fat body and hemolymph extracts was carried out and the relationship between the chemical shift of Pi and pH determined. On this basis the pH of the hemolymph was estimated at approx. 6.7.The metabolic inhibitors, iodoacetate and dinitrophenol, had significant effects on the 31P NMR spectrum of intact larvae. Administration of iodoacetate caused a rapid increase in the levels of sugar phosphates together with decreases in NTP and PA. Dinitrophenol also caused declines in the relative levels of NTP and PA but sugar phosphates decreased as well. The experiments demonstrated the potential of in vivo NMR analysis for metabolic studies on high energy phosphate metabolites in M. sexta.  相似文献   

18.
Docosahexaenoic acid (DHA), the longest and most unsaturated fatty acid commonly found in biological membranes, is known to affect various membrane properties. In a variety of cell membranes, DHA is primarily incorporated in phosphatidylethanolamines, where its function remains poorly understood. In order to understand the role of DHA in influencing membrane structure, we utilize (31)P NMR spectroscopy to study the phase behavior of 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine (SDPE) in comparison to 1-palmitoyl-2-oleoyl-sn-glycerophosphoethanolamine (POPE) from 20 to 50 degrees C. Spectra of SDPE phospholipids show the formation of inverted hexagonal phase (H(II)) from 20 to 50 degrees C; in contrast, POPE mutilamellar dispersions exist in a lamellar liquid-crystalline phase (L(alpha)) at the same temperatures. The ability of SDPE to adopt nonbilayer phases at a physiological temperature may indicate its role in imparting negative curvature stress upon the membrane and may affect local molecular organization including the formation of lipid microdomains within biological membranes.  相似文献   

19.
Maderia M  Horton TE  DeRose VJ 《Biochemistry》2000,39(28):8193-8200
A metal site in a 5'-GAAA-3' tetraloop, a stabilizing and phylogenetically conserved RNA motif, is explored using (31)P NMR spectroscopy and phosphorothioate modifications. Similar to previous reports [Legault, P., and Pardi, A. (1994) J. Magn. Reson., Ser. B 103, 82-86], the (31)P NMR spectrum of a 12-nucleotide stem-loop sequence 5'-GGCCGAAAGGCC-3' exhibits resolved features from each of the phosphodiester linkages. Titration with Mg(2+) results in distinct shifts of a subset of these (31)P features, which are assigned to phosphodiesters 5' to A6, A7, and G5. Titration with Co(NH(3))(6)(3+) causes only a slight upfield shift in the A6 feature, suggesting that changes caused by Mg(2+) are due to inner-sphere metal-phosphate coordination. R(p)-Phosphorothioate substitutions introduced enzymatically 5' to each of the three A residues of the tetraloop provide well-resolved (31)P NMR features that are observed to shift in the presence of Cd(2+) but not Mg(2+), again consistent with a metal-phosphate site. Analysis of (31)P NMR spectra using the sequence 5'-GGGCGAAAGUCC-3' with single phosphorothioate substitutions in the loop region, separated into R(p) and S(p) diastereomers, provides evidence for an inner-sphere interaction with the phosphate 5' to A7 but outer-sphere or structural effects that cause perturbations 5' to A6. Introduction of an R(p)-phosphorothioate 5' to A7 results in a distinct (31)P NMR spectrum, consistent with thermodynamic studies reported in the accompanying paper that indicate a unique structure caused by this substitution. On the basis of these results and existing structural information, a metal site in the 5'-GAAA-3' tetraloop is modeled using restrained molecular dynamics simulations.  相似文献   

20.
Previously, we examined the imino proton relaxation of d(GGAATTCC) in order to characterize salt and polyamine effects on the base-pair opening kinetics of this oligonucleotide [Braunlin, W. H., & Bloomfield, V. A. (1988) Biochemistry 27, 1184-1191]. Here, we report salt-dependent measurements of the NMR behavior of the nonexchangeable base proton resonances of d(GGAATTCC). From chemical shift measurements, we find an unexpectedly large salt dependence of Ka, the equilibrium constant for helix association. A total of 1.8 +/- 0.3 sodium ions are thermodynamically released upon dissociation of the octamer duplex. Most of the salt dependence of the equilibrium constant can be traced to a large salt dependence of the association rate. Thus, 1.4 +/- 0.2 sodium ions associate during the rate-limiting step of helix association. In agreement with our previous imino proton results, we also find a significant salt dependence of the duplex dissociation rate. Activation energies for helix association are very small, and possibly negative; most of the temperature dependence of the association equilibrium can be traced to a large activation energy (approximately 50 kcal/mol) for duplex dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号