首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The findings of our work were 2-fold: (1) calcineurin (from bovine brain) can catalyze the complete dephosphorylation of the phosphotyrosine and phosphoserine residues in the human placental receptor for epidermal growth factor urogastrone (EGF-URO), and (2) the major calmodulin-binding protein of human placental membranes is a calcineurin-related protein. In terms of its metal ion dependence (Ni2+ greater than Mn2+ greater than Co2+), its calmodulin dependence, and its sensitivity to inhibitors (Zn2+, fluoride, orthovanadate), the phosphotyrosyl protein phosphatase activity of calcineurin, using the EGF-URO receptor as substrate, paralleled the enzyme activity measured with p-nitrophenyl phosphate (PNPP) as a substrate. These characteristics distinguish calcineurin from other classes of protein phosphotyrosyl phosphatases. Calcineurin purified from placental membranes was similar to, if not identical with, bovine brain calcineurin in terms of enzymatic specific activity toward PNPP, subunit electrophoretic mobilities, and immunological cross-reactivity. The enzymatic properties and comparative abundance of calcineurin in the placenta membranes suggest that this enzyme may play an important role in regulating the phosphorylation state of those receptors (e.g., for EGF-URO or insulin) also known to be present in the membranes.  相似文献   

2.
The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20–24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.  相似文献   

3.
Several cellular signal transduction cascades are affected by oxidative stress. In this study, the effect of hydrogen peroxide (H2O2) on the endocytosis of the epidermal growth factor (EGF) receptor was investigated. Exposure of HER14 cells to H2O2 resulted in a concentration-dependent inhibition of EGF receptor internalization. Binding studies demonstrated that this H2O2-induced inhibition in internalization was not due to altered binding of EGF to its receptor. Addition of H2O2 at different time points during internalization showed that EGF receptor internalization was rapidly reduced, suggesting that one of the first steps in the internalization process is inhibited. In addition, H2O2 inhibited the internalization of a different receptor, the chicken hepatic lectin receptor, in a concentration-dependent manner as well. Treatment of cells with another inducer of oxidative stress, cumene hydroperoxide, also resulted in a decreased internalization. Finally, we showed that H2O2 inhibited EGF-induced mono-ubiquitination of the EGF receptor pathway substrate clone 15, a process that normally occurs during EGF receptor endocytosis. These results clearly show that oxidative stress interferes with EGF signaling.  相似文献   

4.
Epidermal growth factor (EGF) stimulates the growth of many tissues and inhibits stimulated gastric acid secretion. Its primary tissue of origin in man is still unknown. We used polyclonal anti-human EGF sera in the peroxidase-antiperoxidase immunocytochemical staining technique to identify immunoreactive human EGF (ihEGF) in tissue sections from 29 subjects ranging from fetuses to 63 years in age. In addition to acinar cells in the submandibular salivary glands and cells of Brunner's duodenal glands, previously reported to contain ihEGF, we found ihEGF in most anterior pituitary glycopeptide hormone-secreting cells, in gastric and pyloric gland cells of the stomach, and in bone marrow cells that resembled mononuclear phagocytes in subjects of all ages. The eccrine sweat glands in the skin of adults also contained ihEGF. Cells containing ihEGF were found singly or in clusters in the trachea of the fetus only. No fetal pancreatic islet cells stained, but occasional cells in neonates and a majority of islet cells in older subjects contained ihEGF; there was no constant association with insulin, glucagon, or somatostatin. Only the lactating breast contained ihEGF. In adults, outer adrenomedullary cells contained ihEGF. Intense immunostaining was observed in the renal medulla, apparently limited to the extracellular area between the renal tubules, and increased with age; the cortex was devoid of ihEGF. No ihEGF was detected in posterior pituitary gland, thyroid gland, heart, lung, or liver at any age. An adult prostate contained ihEGF only in an area of local injury, and some primordial follicles from the ovary of a newborn appeared to contain ihEGF. Thus, many tissues appear to synthesize hEGF, which may exert exocrine, endocrine, or paracrine functions in different tissues and at different ages.  相似文献   

5.
A new procedure for the isolation of two biologically active forms of human epidermal growth factor (h-EGF-1) and (h-EGF-2) has been devised. Starting with 20 liters of raw human urine, the method employs a six-step fractionation procedure which yields 100–150 μg of h-EGF-1 and 50–100 μg of h-EGF-2. Initial studies suggest that h-EGF-2 may have been derived from h-EGF-1 by removal of the carboxy-terminal arginine or leucine-arginine residue(s). Based on immunological data and electrophoretic mobility at pH 9.5, h-EGF-2 appears to be identical to authentic h-EGF isolated by Cohen and Carpenter (Proc. Natl. Acad. Sci., 1975, 72, 1317). Using the antibody to authentic h-EGF, single precipitin lines of identity are observed between h-EGF-1, h-EGF-2, and authentic h-EGF. Both forms of h-EGF have comparable biological activity in stimulating the growth of adult human skin fibroblasts in culture.  相似文献   

6.
Human epidermal growth factor has been isolated from a concentrated chromatographic eluate of human urine. The purification method utilizes six chromatographic steps including adsorption to aminoethylcellulose (AE-11), gel filtration on Sephadex G-50, carboxymethylcellulose (CM-52) chromatography, ion-exchange HPLC and reverse-phase HPLC. The final product appears homogeneous and identical to pure gamma-urogastrone when analyzed by polyacrylamide gel electrophoresis and reverse-phase HPLC using two eluent systems. The yield of the method described above allowed the development of a sensitive radioimmunoassay system for this growth factor.  相似文献   

7.
The biosynthesis, phosphorylation, and degradation of the epidermal growth factor (EGF) receptor were examined in normal human fibroblasts. The receptor was initially synthesized as an Mr = 160,000 immature form which matured to an Mr = 170,000 form in a monensin-sensitive manner. Tunicamycin treatment led to the accumulation of an Mr = 130,000 protein. The receptor was phosphorylated on serine and threonine residues in normally growing and quiescent cells, and treatment with EGF or the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a two- to threefold increase in receptor-bound phosphate. EGF increased the amount of phosphoserine and phosphothreonine and caused the appearance of a minor amount of phosphotyrosine. TPA increased the levels of phosphoserine and phosphothreonine exclusively. Prior treatment with TPA inhibited the EGF-dependent appearance of phosphotyrosine in the receptor. Analysis of tryptic phosphopeptides revealed that six of the seven major peptides were common to the receptor from cells treated with EGF or TPA. EGF strongly stimulated [3H]thymidine incorporation in confluent cells, increased final saturation density three to fourfold, and increased whole-cell levels of phosphotyrosine about threefold. Treatment of cells with TPA before addition of EGF inhibited all three of these EGF-dependent responses. EGF also decreased the receptor half-life from 15 h to 1 h, but this was not inhibited by TPA. TPA alone had no detectable effect on the receptor half-life.  相似文献   

8.
Human, rat and mouse epidermal growth factors (EGF) bind to the same receptor on human placenta, but the binding characteristics differ. The apparent affinity constant (KA) for human EGF is higher (15 X 10(9) l/mol) than KA for rat EGF (10 X 10(9) l/mol). Mouse EGF binds with the lowest KA (5 X 10(9) l/mol). The pH optimum differs so that human and rat EGF bind with a pH optimum of 8.0, whereas mouse EGF binds with an optimum of pH 7.4. Half maximal dissociation is 130, 50 and 25 min for human, rat and mouse EGF, respectively. The structures of human, rat and mouse EGF differ somewhat. At least 11 of the first 24 residues differ. The N-terminal sequence of rat EGF is: Ala/Ser-Gly-X-Pro-Pro-Ser-Tyr-Asp-Gly-Tyr-X-Lys-Asp-Gly-Gly-Val-X-Met-Ty r-Val -Glu.  相似文献   

9.
Canine epidermal growth factor (EGF)/urogastrone was partially purified from dog urine by fractional precipitation with (NH4)2SO4, ion-exchange chromatography with DEAE-cellulose DE-52, gel filtration with Sephadex G-50, and a second DE-52 chromatography, to yield receptor-competing activity equivalent to 13 micrograms of standard mouse EGF/litre of starting urine. The purification was monitored by a competitive radioreceptor assay using fixed monolayers of A431 cells. The partially purified canine EGF/urogastrone demonstrated a growth-stimulating activity in 3T3 mouse fibroblast cells as potent as mouse EGF. Analysis by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed one major peptide component with an Mr similar to that of mouse EGF, and two minor peptides of slightly higher Mr. The major peptide component was isolated after reduction and its amino acid composition was determined.  相似文献   

10.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

11.
A sensitive enzyme immunoassay (EIA) was developed for human epidermal growth factor (hEGF) or urogastrone, which was isolated from human urine. Our EIA system is based on the sandwiching of an antigen between anti-hEGF IgG coated on a polystyrene tube and anti-hEGF antibody Fab'-linked beta-D-galactosidase (beta-D-galactosidase, EC 3.2.1.23). This method has the advantages that the procedures are simple and rapid and that the antibody Fab'-beta-D-galactosidase complex is more stable than radioisotope-labeled IgG. Purified hEGF is detectable at as low as 100 pg/ml, which is very sensitive compared to the radioimmuno-assays or radioreceptor assays already reported. Using this new EIA system, hEGF levels in human urine were examined. The values for normal males and females were 48.4 and 83.5 ng/mg creatinine, respectively, which shows that females excrete 1.7 times more hEGF than males.  相似文献   

12.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

13.
We have investigated the effects of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) in the prereplicative phase of human foreskin fibroblasts cultured under defined conditions in serum-free MCDB 105 medium. Specific antisera against PDGF and EGF were used to inhibit the stimulation after certain incubation times. It was found that PDGF or EGF had to be present during the major part of the G0/G1 phase (greater than 8 h) in order to cause any appreciable commitment to DNA synthesis; half maximal stimulations were obtained after 9 h and 11 h of incubations with PDGF and EGF, respectively. When tested during a suboptimal period of time (6 h), neither an increase in concentration of PDGF or EGF, nor the addition of both growth factors simultaneously caused any appreciable stimulation of DNA synthesis. However, a suboptimal pulse of PDGF, followed by a suboptimal pulse of EGF, or vice versa, led to commitment to DNA synthesis. This finding indicates that PDGF and EGF, at least in part, induce similar intracellular events that transmit the mitogenic signal.  相似文献   

14.
The new system for the transfer and expression of foreign genes based on retroviral vectors pPS-neo, conferring neomycin resistance was constructed. The BALB/c mouse cell lines producing highly active human growth hormone (more than 7 micrograms/ml into culture medium) were constructed using these vectors. An antibody column was used to purify the growth hormone from cell culture medium. Possibilities of producers to be applied for gene therapy are discussed.  相似文献   

15.
16.
Insulin receptor (IR) and the epidermal growth factor receptor (EGFR) were the first receptor tyrosine kinases (RTKs) to be studied in detail. Both are important clinical targets—in diabetes and cancer, respectively. They have unique extracellular domain compositions among RTKs, but share a common module with two ligand‐binding leucine‐rich‐repeat (LRR)‐like domains connected by a flexible cysteine‐rich (CR) domain (L1‐CR‐L2 in IR/domain, I‐II‐III in EGFR). This module is linked to the transmembrane region by three fibronectin type III domains in IR, and by a second CR in EGFR. Despite sharing this conserved ligand‐binding module, IR and EGFR family members are considered mechanistically distinct—in part because IR is a disulfide‐linked (αβ)2 dimer regardless of ligand binding, whereas EGFR is a monomer that undergoes ligand‐induced dimerization. Recent cryo‐electron microscopy (cryo‐EM) structures suggest a way of unifying IR and EGFR activation mechanisms and origins of negative cooperativity. In EGFR, ligand engages both LRRs in the ligand‐binding module, “closing” this module to break intramolecular autoinhibitory interactions and expose new dimerization sites for receptor activation. How insulin binds the activated IR was less clear until now. Insulin was known to associate with one LRR (L1), but recent cryo‐EM structures suggest that it also engages the second LRR (albeit indirectly) to “close” the L1‐CR‐L2 module, paralleling EGFR. This transition simultaneously breaks autoinhibitory interactions and creates new receptor‐receptor contacts—remodeling the IR dimer (rather than inducing dimerization per se) to activate it. Here, we develop this view in detail, drawing mechanistic links between IR and EGFR.  相似文献   

17.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

18.
In the present study, we have tested the hypothesis that the regeneration of intestinal epithelium is regulated by changes in the uptake of radiolabeled recombinant human urogastrone (125I rhUG) in the regenerating mucosa and epidermal growth factor/urogastrone (EGF/URO) producing organs in the rats. Operations were performed on rats to approximate the ileal mucosa to the serosal surface of the cecum. This procedure allows the regeneration of ileal mucosa onto the serosal surface of the cecum. Groups of 5 rats were killed on the 2nd, 4th, 8th and 12th post-operative days. Two hours before autopsy, rats were given 0.5 ml (50 microCi with 30 micrograms protein) of 125I rhUG intravenously and the following tissues were removed: regenerating mucosa, salivary gland, duodenum, liver and kidney. Results indicated that the uptake of 125I rhUG was significantly greater in the salivary gland and duodenum on the 2nd post-operative day which gradually tapered with increasing time after surgery. A similar pattern in the uptake of 125I rhUG was also evident in the regenerating mucosa. Further analysis revealed a significant correlation between the uptake of 125I rhUG in the salivary gland and duodenum vs rate of epithelialization and uptake of 125I rhUG in the regenerative mucosa. These results suggested that the endogenous EGF/URO produced in the salivary gland and duodenum may be a factor in the regulation of intestinal regeneration; however, the mechanism responsible for reflex stimulation of EGF/URO production in these organs is not known.  相似文献   

19.
NRK fibroblasts exposed to transforming growth factor-beta (TGF-beta) show increased binding of radiolabeled epidermal growth factor (EGF) relative to untreated cells. The binding of another growth factor, rat insulin-like growth factor-II, is unaffected. The increase in EGF binding induced by TGF-beta is not due to inhibition of EGF processing nor to an alteration in the affinity of plasma membrane EGF receptors. However, treatment of the cells with TGF-beta does cause a rapid increase in the number of plasma membrane receptors for EGF. TGF-beta has little effect on the rate of overall protein synthesis, but the increase it induces in EGF binding can be completely inhibited by cycloheximide and tunicamycin. Thus a selective synthetic mechanism underlies TGF-beta action. Cells incubated with TGF-beta also show altered down regulation of their EGF receptors in response to the ligand; concentrations of EGF that can induce strong biological responses no longer decrease the plasma membrane receptor level below the basal state. These results agree well with the known specificity and synergism of the interaction between TGF-beta and EGF. Moreover, they describe a mechanism of growth control in which bioactive peptides act coordinately through a regulatory effect on the number of cell-surface receptors.  相似文献   

20.
Elastase/anti-elastase imbalance is a hallmark of emphysema, a chronic obstructive pulmonary disease associated with the rupture and inefficient repair of interstitial elastin. We report that neutrophil elastase (NE) at low physiologic concentrations, ranging from 35 nm to 1 microm, invokes transient, peaking at 15 min, activation of extracellular signal-regulated kinases 1 and 2 (ERK) in elastogenic lung fibroblasts. ERK activation is preceded by the release of soluble 25-26-kDa forms of epidermal growth factor (EGF) and transactivation of EGF receptor (EGFR) in NE-exposed cells. The stimulatory effect of NE on ERK is abrogated in the presence of anti-EGF-neutralizing antibodies, EGFR tyrosine kinase inhibitor (AG1478), and ERK kinase inhibitor (PD98059), as well as abolished in both EGFR-desensitized and endocytosis-arrested fibroblasts. Nuclear accumulation of activated ERK is associated with transient, peaking at 30 min, induction of c-Fos and sustained, observed at 24-48 h, decrease of tropoelastin mRNA levels in NE-challenged cells. Pretreatment of fibroblasts with AG1478 or PD98059 abrogates the NE-initiated tropoelastin mRNA suppression. We conclude that proteolytically released EGF signals directly via EGFR and ERK to down-regulate tropoelastin mRNA in NE-challenged lung fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号